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INTRODUCTION 

The destruction of animals, whether the object in view 

be due to the advancing age or the prevention of further suf­

fering caused by disease or accident, is an operation which 

is repugnant to the operator and essential in the public in­

terest. It is not to be denied that when the time arrives 

that pets need to be put painlessly out of existence, they 

are entitled to receive in this last humane service the same 

high standard of care and attention which they generally re­

ceive during life. The views on which is the most humane 

method of euthanasia are extremely varied. 

Decompression is a method of euthanasia which simulates 

high altitude conditions and produces a decrease in oxygen 

tension and a state of anoxia. Cerebral anoxemia results in 

unconsciousness and death of the animal. The decompression 

of small animals as a method of euthanasia has found extensive 

use in certain areas of the United States. The Humane Society 

of Los Angeles, Calif., destroys approximately fifty dogs a 

day by decompression. This method of euthanasia is now in 

use in New York City, N. Y.; Chicago, 111.; San Francisco, 

Calif.; Brentwood, Mo.; Fort Wayne, Ind.; Bakersfield, Calif.; 

Los Angeles, Calif.; Tacooa, Wash.; Denver, Colo.; Palo Alta, 

Calif.; Santa Rosa, Calif.; and Pomona, Calif. Many other 

cities are contemplating its use. Workers using the Enthan-

air, decompression system of euthanasia, feel that it has the 
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advantages of being cleaner, safer, not dangerous to the per­

sonnel, more humane than other methods of euthanasia, and 

requires less skill to operate. 

The originators1 of high altitude euthanasia for small 

animals installed a decompression apparatus (Euthanair) in the 

Veterinary Physiology and Pharmacology Department at Iowa 

State College in the spring of 1955 for purposes of experi­

mental research. Since several humane societies use this 

method of euthanasia, it would seem of widespread interest to 

know if pain is experienced during decompression. To ac­

curately obtain this information it is essential to determine 

the pain reaction threshold in an experimental animal. The 

pain reaction threshold is defined as the least amount of 

a quantitatively measurable stimulus necessary to evoke a pain 

reaction. A literature survey reveals a paucity of research 

on pain reaction thresholds in the animal and nearly its 

complete absence with the canine as the experimental subject. 

The purpose of this preliminary investigation was to deter­

mine if pain is perceived during decompression. Various methods 

of determining pain reaction thresholds in the dog were inves­

tigated. A surgical experiment was designed to completely 

alleviate the sensation of pain by the animal except froa 

^Euthanair Engineering and Sales Company, 5156 Soutbridge 
Avenue, Los Angeles 43, California. 
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those structures supplied by certain cranial nerves. The 

amount of anxiety and apprehension during decompression was 

observed before and after the surgical operation. The effect 

of morphine on the pain reaction thresholds was recorded. 

Observations on the excitement and anxiety observed during 

decompression were recorded before and after morphine ad­

ministration to the dog. Movies were taken during decompres­

sion of the experimental animals for detailed study. 
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LITERATURE CITED 

Research by Woollard et al. (82) in 1940 revealed that 

pain is a specific sensory experience mediated through nerve 

structures which are separate from those which mediate other 

sensations such as touch, pressure, heat, and cold. Painful 

impulses are received at ramifying naked nerve terminals 

scattered throughout the skin, subcutaneous structures and 

viscera which are specific for that sensation (67, 70, 82). 

Investigators (21, 7*0 have found that painful impulses are 

carried through myelinated and nonmyelinated fibers of vari­

able sizes either directly to the posterior root ganglia in 

somatic nerves or indirectly in sympathetic trunks. 

In 1941 Irfolf and Hardy (77) found that nerves which sub­

serve pain continue to conduct the sensation as long as the 

stimulus is applied. Thus, for painful stimuli, no true adap­

tation occurs as it does for touch. These workers mention 

that there may be apparent adaptation when, during prolonged 

stimulation, the local situation in the painful part is 

altered so that the mechanism for pain is interrupted. Wolff 

and Wolf (81) point out that the intensity of two pains 

existing separately at the same time is no greater than that 

of the more intense of the two. The existence of one pain 

actually raises the threshold for perception of another. 

The methods which have been employed in algesimetric 

studies have been classified by Goetzl et al. (23) in 1943 
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as mechanical, thermal, chemical and electrical, depending 

upon the nature of the stimulus. Valuable work has been done 

with mechanical, chemical and electrical methods for evoking 

pain, but these techniques do not combine the flexibility and 

precision equal to that of the thermal methods (28). 

Thermal Stimulation as a Method for Studying Pain Threshold 

Thermal methods of evoking pain are among the oldest and 

were first reported by Goldscheider (24) in 1884. One of the 

early attempts to measure pain threshold by the application 

of a hot object to the skin was the method of Elo and Nikula 

(18) in 1910. A thermometer was used, the bulb of which was 

flattened to a surface of about 0.5 cm. . Just above this 

flattened end the bulb was covered with insulating wire con­

nected with resistances and a source of electrical energy. 

Any desired temperature could be obtained and easily read from 

the thermometer itself. The temperature at which pain was 

elicited was called the pain threshold. 

The adaptation to pain from radiant heat was studied by 

Stone and Dallenbach (66) in 193^* They shaved the skin on 

the dorsal surface of the forearm and stimulated this area 

with thermal radiation. The intensity of the stimulus was 

not measured because these authors were not primarily concerned 

with measurements of pain threshold. 
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In 1936 Oppel and Hardy (50), who demonstrated that the 

radiation technique could be applied quantitatively to the 

study of temperature sense, adapted this method to measuring 

the intensity of the thermal stimulus required to elicit a 

painful sensation in the skin. This new method for measuring 

pain threshold was first described by Hardy, Tfolff and Goodell 

(29) in 1940. These investigators revealed a quantitative meth­

od for measuring pain thresholds in the skin by thermal radia­

tion and this method has the general advantage of measuring a 

physical quantity which is directly proportional to the changes 

occurring in the skin. Further advantages of the method were 

the simplicity of the technique, rapidity of measurement, and 

that any part of the skin surface could be studied and the 

size of the stimulated area could be varied at will. 

The authors were used as subjects and it was found that 

intense pain in any part of the body, raised the pain thresh­

old in the skin of other parts as much as 35 per cent. The 

intensity of radiation which produced blistering in 3 seconds 

was observed to be twice that necessary for the bare percep­

tion of pain. The pain thresholds measured did not vary con­

sistently with the time of day, with the general effective­

ness, or the emotional state of the three subjects tested. 

Individual threshold measurements for the three authors were 

2 1 
0.229, 0.231 and 0.233 gm, cal/sec./cm. and all measurements 

^Gram calories per second per square centimeter. 
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were found to be within + 12 per cent of their respective 

average values. The standard deviation for a single measure­

ment was calculated to be + 2 per cent. The apparatus for 

measuring the pain threshold was described in detail. 

D'Amour and Smith (12) in 1941 described a rapid method 

for determining the pain threshold in the rat. A thermal tech­

nique was used and the apparatus used in eliciting pain included 

a 6 to 8 volt bulb, voltage regulator, transformer, rheostat 

and stop watch. The rays from the bulb were focused on the tip 

of the rat's tail which was placed in a grooved board. The re­

sponse to pain was a sudden, typical twitch of the tail. After 

a few trials it was found that a stimulus of light intensity 

which produced a reaction in about 5 seconds was most con­

venient. 

Some 10,000 individual tests were made on several hundred 

rats. Little individual variation was observed. The method 

was applied to the assay of the analgesic properties of sev­

eral drugs. A comparative assay of five opiates gave results 

in good agreement with clinical observations. 

Pain threshold measurements with the thermal technique in 

the dog were reported by Andrews and Workman (1) in 1941. The 

standard Hardy-Wolff (29) apparatus having a variable intensi­

ty light source and a fixed 3 second exposure apparatus was 

used. Two adult female dogs were used as the subjects. The 

hair was clipped closely over the mid-dorsum at the thoraco-
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lumbar region and this spot was thoroughly blackened with 

India ink. 

Attempts to record a galvanic skin reflex in the dog were 

not successful, but the investigators found that there was a 

characteristic reflex twitch of the musculature of the back 

whenever a definite level of stimulation was exceeded. The 

twitch was not confined to the site of stimulation, but in­

cluded a rather large surrounding area. The analgesic action 

of 3 opiates was tested. The authors found the intensity of 

the stimulus required to evoke a response is constant to just 

about the same degree as in man. 

Wolf and Hardy (77) in 1941 found that pain is entirely 

separate from and independent of the sensation of cold. They 

report that pain does not show the phenomenon of spatial sum­

mation and that the highest bath temperature in which pain can 

be obtained is 18°C. The blood pressure raising effect is 

proportional both to the intensity of pain experienced and to 

the degree of cold. Their work revealed that sympathectomy 

was found to augment the intensity of pain derived from cold. 

Evidence is presented which indicates that the elevation of 

blood pressure which results from immersion of a part in cold 

water is a measure of the subject's reaction to "cold pain". 

The discrimination of differences in intensity of a pain­

ful stimulus as a basis of a scale of pain intensity was re­

ported on by Hardy et ajl. (30) in 194-7• They mention that 
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the effective range of this stimulus is limited by the pain 

threshold and pain of maximal intensity. The authors found 

that pain induced in the skin by thermal radiation has a cell­

ing intensity and this ceiling pain was produced on the fore­

arm in man by a stimulus intensity of 680 millical./sec./cm.2 

in a 3 second exposure. Twenty-one discriminate intensities 

of pain were observed between, the threshold pain and the ceil­

ing pain. The workers presented a scale of pain intensity, 

the unit of which is called a "dol". A dol is composed of 

two perceptible steps in discrimination of stimulus intensity. 

The investigators used a modified Hardy-Wolff-Goodell pain 

threshold apparatus as a stimulator. 

In 19*+8 Hardy et al. (25) used a three second exposure 

of thermal radiation on the skin as a painful stimulus. Meas­

urements were made of the stimulus intensities which evoke 

painful sensations of various relative magnitudes. The 

authors performed three series of experiments, in the first 

of which three experienced observers reported the relative 

intensities of pain in terms of fractions of an eight-del 

pain. In the second series of experiments 70 medical students 

were similarly studied. In a third series of experiments the 

effects of fatigue and minor mood changes upon discriminations 

of relative intensity of pain were studied. 

These investigators found that moderate fatigue and day 

to day variations in mood were not associated with an appreci­

able change in the ability to estimate pain intensity. The 
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accuracy of estimating pain intensity is limited by the abili­

ty of the individual to discriminate differences in pain in­

tensity. They found this limit is plus or minus one-half dol. 

They found that the dol scale provides a numerical scale 

of sensory steps all of which are equal. It affords a basis 

for the intercomparison of other methods of estimating pain 

intensity, providing these estimates have been made in terms 

of a reproducible pain. 

In 1948 Lloyd-Smith and Mendelssohn (44) studied the 

"tolerance limit" of the human skin to radiant heat by expos­

ing areas of skin measuring 12 x 12 cm. over the epigastrium 

and interscapular region on human subjects to radiation from 

a 1000 watt tungsten filament bulb set in a concave mirror. 

The "tolerance limit" was defined as "the maximal amount of 

radiant heat that could be tolerated with comfort and without 

hazard of burn". They devised a skin thermometer of fine 

copper and constantan wires threaded through a hypodermic 

needle and soldered together at the tip to form a thermojunc­

tion. It was found that at a skin temperature of 44.6°C there 

is a sharp and well defined transition from a sensation of 

heat to one of burning or sharp prick. These authors esti­

mated that human skin could tolerate approximately 2.5 gm. 

cal./cm. /min. 

Another method of evoking pain was devised by Wolf and 

Hardy (77) whereby they used lowered tissue temperature to 
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induce pain. The subject's hand was immersed in cold water 

and threshold aching pain was induced at a temperature of 

18°C. In 1951 Boring (4) introduced hot and cold water in 

the alimentary canal, thereby evoking pain. His studies were 

not particularly concerned with the measurement of pain 

threshold. 

In 1949 Hardy and Javert (26) reported on the measurement 

of pain intensity in childbirth by using the dolorimeter (30). 

Four hundred test readings, resulting in 55 measurements of 

pain intensity, were made on 13 patients during the first, 

second and fourth stages of labor without analgesia. The 

measurements were made by comparison of the labor pains with 

a pain of standard intensity which was produced by a three 

second exposure to thermal radiation on the dorsal surface 

of the right hand. The pain evoked on the hand had been pre­

viously standardized into ten and one half units of painfull­

ness between the threshold pain and the most intense pain 

which can be experienced. The intensity of the pain experi­

enced by the patient could not always be evaluated on the 

basis of her reaction, nor correlated with her apparent 

distress. 

Haugen and Living is ton (34) in 1953 reported on a study 

of the dolorimeter to determine whether or not it could be 

used to measure pain in clinical patients. It was concluded 

that the inexperience of such subjects in the testing method 
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would introduce new variables that would be difficult to 

evaluate. They reported that tests above threshold values 

tend to sensitize the skin. In clinical testing of patients, 

such sensitization would be difficult to avoid when grading 

pain intensities. They felt that the dolorimeter may be use­

ful in the hands of experts in evaluating the relative ef­

ficacy of analgesic drugs, but they doubted that the "dol" 

scale will prove of practical value in measuring pain in the 

clinic. 

A statistical analysis was made by Winder (76) of radi­

ant thermal stimulus energies (lamp wattage) required for 

eliciting the nociceptive contraction of the muscuius cutane­

ous maximus of the guinea pig. The data consisted of three 

successive readings at 20 minute intervals on 365 animals. 

The distribution of thresholds among animals was approximately 

normal without transformation. This finding was more inferen-

tially related to the greater absolute variability among 

animals than that within animals. Without significant in­

fluence on the thresholds were: elapse of as many as 7^ days 

of observation, time of day, shade of skin color, body weight, 

and/or age within the range studied, and sex. 

In 1957j Hardy et al. (27) reported on the responses of 

the rat to thermal radiation. These authors also presented 

data on the thermal properties of the rat's skin below the 

bum level which could be used for test purposes. Two types 



13 

of reaction thresholds were reported: the twitching of the 

skin and a retraction of the entire body. The end points for 

the reactions were quite clear cut for stimuli between 100 
p 1 

and 250 mc./sec./cm. 

Electrical Methods of Evoking Pain as a Mean 

for Studying Pain Threshold 

As early as 1908 Martin et al. (46) studied sensation in 

humans by the method of faradie stimulation. These inves­

tigators observed a diurnal rhythmic variation in the level 

of the sensory threshold for faradic stimulation. Goetzl and 

his associates (23) in 1943 point out that electrical stimuli 

have been used in algesimetric studies in form of galvanic, 

faradic, high frequency currents or condenser discharges. 

Such stimuli are measurable in terms of volts or amperes in 

divisions as small as is practical. They mention that the 

electrical method of stimulation appears to be highly flexible, 

and capable of accurate timing and measurement. 

Extensive quantitative studies of the pain threshold in 

rats after the administration of various analgesic agents were 

reported by Macht and Macht (45) in 1940. These observers 

applied faradic stimulation from a standardized induction 

coil to sensitive areas of the scrotum of tame adult male 

^Millicalories per second per square centimeter. 
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rats, and measured the minimal energy required to elicit a 

painful squeal. In one of their series of 20 rats the voltage 

required to elicit threshold pain varied from 100 to 445 volts. 

Weitz (71) in 1942 conducted experiments revealing the 

effect of skin temperature on pain thresholds. He used 

single break shocks from a Harvard inductorium on the arms 

and measured the intensity of stimuli in terms of the posi­

tion of the secondary coil. 

A method of ascertaining pain thresholds by applying an 

electric current through a metal filling in a tooth and noting 

the voltage at which the subject first experienced a painful 

sensation was first described by Goetzl et al. (23) in 1943• 

It was found that a sensation of pain was the only definite 

sensation that could be produced in a tooth by this stimulus. 

At each determination, the pain threshold value accepted for 

the subject was the lowest voltage which produced a painful 

sensation three times in succession. The authors did not 

report numerical measurements of pain threshold in their sub­

jects. 

This method was also adapted to the study of effects of 

noxious stimulation in dogs. Two silver amalgam pit fillings 

were placed in each cuspid tooth in opposite positions so that 

pincer like electrodes would engage pits in the two fillings. 

The electrodes had platinum points. The cavities for the 

fillings were cut as deeply as possible without opening into 
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the pulp chamber. The first distinctly perceptible twitch of 

an isolated muscle or group of muscles was regarded as the 

standard pain threshold response. In a group of 5 dogs ob­

served over a period of 16 weeks the authors reported an 

average threshold of 1.09 volts with an average deviation of 

plus or minus 0.14 volts. The workers also describe the ap­

paratus used for measuring the pain threshold. 

Thresholds of the tooth were determined in the human by 

stimulation of the pulp, through a metal filling, with an 

induced, highly damped sinusoidal current by Sonnenschein and 

his associates (63) in 1950. The instrument, calibrated from 

0 to 4.2 volts in steps of 0.2 volt, delivered impulses at 

approximately one per second. The intensities of current, 

measured to the closest 0.05 volt, for the production of two 

end points were determined. The authors were interested in 

studying the analgesic effect of tetra-ethyl-ammonium chloride 

in man. 

In 1950 Harris and Brandel (32) analyzed and discussed 

the results of an experiment using the tooth pulp of the human 

as the receptive site and 60 cycle induced current as a pain­

ful stimulus. Their algesimeter was a modification of one 

described by Goetzl et al. (23). In their instrument, the 

primary coil rotated through a fixed path while the secondary 

was in a fixed position. The current was varied from 0 to 

250 microamperes by the inclusion in the circuit of a 250 ohm 
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potentiometer. The dial of the potentiometer was calibrated 

in centivolts (0.01 v.). Four control threshold determina­

tions were made at five minute intervals. The authors found 

that there were very significant differences between the 

thresholds of subjects and the thresholds of the two teeth in 

the same head. Also a significant difference was found be­

tween the thresholds of teeth on different days• There was 

no significant difference between the thresholds obtained at 

five minute intervals on the same tooth. 

An effort was made by Harris and Blockus (31) to evaluate 

quantitatively the reliability and validity of electrical 

excitation of the human tooth pulp as an algesimetric method. 

Only filled teeth were studied and uncontrolled current loss 

was reduced by careful drying of the teeth. The 117 volt 

house current was stabilized through a 110 volt, constant 

voltage transformer, then passed through l600 ohms of fixed 

resistance to a 200 ohm, 200 watt, linear taper potentiometer. 

From the potentiometer, current flows through the primary of 

a 110i5000 volt, neon tube transformer. Each lead from the 

secondary passes through a 1 megohm carbon resistor to the 

subject. 

Mechanical variations were rigorously controlled and the 

influence of suggestion was carefully evaluated and found to 

be significant after oral medication. Evidence of reliability 

was obtained by finding that no significant differences oc­
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curred between the thresholds of experimentally induced pain 

when measured in 28 teeth, three times in immediate succes­

sion; and when 2 teeth were studied in each of 9 men, the 

changes in threshold which occurred after injection of 65 mgm. 

of codeine correlated very significantly in 4 of the subjects. 

The stability of the threshold was studied and found to de­

cline significantly in two hours. 

In 1954 Harris and Worley (33) elicited pain in the human 

tooth by electrical stimulation of the tooth pulp in 15 sub­

jects. The stimulator used was described and the pain thresh­

old varied from 1590 to 1641 mv. 

Robertson and his associates (59) in 1947 studied the 

distribution and mechanism of headache and other pain in the 

face and head, which resulted from noxious stimulation of the 

teeth. Using an adaptation of the method of Goetzl et al. 

(23) as described by Ziskin and Wald (84), they ascertained 

pain thresholds in the teeth of four subjects. Considerable 

variation in the pain threshold could be observed from tooth 

to tooth and at various sites on the same tooth. 

A method for effectively stimulating single sensory re­

ceptors in human skin, without mechanically deforming the skin 

was described by Bishop (3) in 1943. He used repetitive 

electric sparks applied to the skin and adjusted the strength 

to give threshold prick sensation. Such a stimulus excited 

touch endings at many points, which sensation could be readily 
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differentiated from prick. In general, prick had a lower 

electrical threshold than touch. The author does not report 

on quantitative measurements of pain thresholds in any units 

of stimulus. 

Mechanical Methods of Inducing Pain as a 

Method for Studying Pain Threshold 

Lacey et al. (4l) and Peiner (54) have related the amount 

of pressure and the pain threshold by the use of mechanical 

devices for production of pain by pressure. The von Frey 

hair stimulator adapted for the study of pain has been dis­

cussed in detail by Kiesow (39). With sharp bristles attached 

to the ends of hairs he tested skin areas for pain sensation. 

He demonstrated that the pain threshold determined with 

pressure on the skin by fine hair is lower than the touch 

threshold. 

An investigation by Gaensler (20) in 1951 revealed a 

quantitative method for measuring visceral pain thresholds by 

hydrostatic distention of the biliary ducts. The painful 

sensation elicited by external elevation of the intrabiliary 

pressure was described as sharp or "colicky" by 4? per cent 

of the patients. The initial pain threshold in different 

patients varied from 90 to 800 mm. of water. The administra­

tion of analgesic substances invariably resulted in an eleva­

tion of the visceral pain threshold. 
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The author reports that differences between visceral pain 

occurred earlier than for superficial pain. The duration of 

action was shorter and the intensity of the analgesia was 

somewhat smaller for visceral pain. 

The effect of tissue temperature on the pain threshold 

as measured with a percussion type of algesimeter was demon­

strated in 19^7 by Wells (72). A metal rod weighing 12.5 

gm. was dropped from varying heights onto the dorsum of a 

finger held firmly in a groove cut into a large cork stopper. 

Pain threshold was expressed in terms of the height from which 

the metal rod had to be dropped to first produce pain. The 

threshold were observed to be lowered when the finger tem­

perature at 36°C was either increased or decreased. 

Chapman et al. (9) describes a method of inducing pain 

in the esophagus, bile duct and gastrointestinal tract by 

mechanical distension. The apparatus consisted of a rubber 

balloon about 3 cm. long attached by a stomach tube to a 

U-shaped water manometer. The balloon was introduced through 

the nose and secured in a position from 5 to 10 cm. above the 

cardiac end of the esophagus. Air is passed into the balloon 

by a syringe at a rate of rise of water pressure of 2 cm. per 

second. 

A report by Chapman and Jones (10) revealed the conduc­

tion of visceral sensory threshold measurements on 29 normal 

subjects. Values ranged from a level of 15 cm. of water 
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pressure for the most sensitive subject, to 89 cm. for the 

least sensitive. 

In 193*+ Litonan (43) in attempting a rough estimate of 

pain sensitivity grouped individuals according to their re­

ports of pain experienced, as having 0, 1 plus and 3 plus pain 

sensitivity. The test consisted of pressing the thumb against 

the tip of the mastoid bone and the index finger against the 

styloid process. A "dolorimeter11 was devised by Gluzek (22) 

in 19^4 to measure pain threshold on the flat surface of the 

middle third of the tibia. With the subject's leg placed on 

a leg rest, a plunger surrounded by a metal sleeve ending in 

a rubber ring was rested lightly against the tibia and fixed 

in position by adjusting a screw. Air is pumped through a 

gauge into the sleeve cylinder, which forced the plunger 

against the tibia. Pain threshold is estimated as the amount 

of air pressure which first elicited pain by this force. 

Chemical Stimulation as a Method for Studying Pain Threshold 

A literature review reveals that little of a quantitative 

nature has been done using injurious chemicals to evoke pain. 

In regard to what has been done Goetzl et al. (23) points out 

that the substance to be tested is applied to the intact or 

injured skin or mucous membrane and the time which elapses be­

tween the application and the occurrence of a response is meas­

ured. Such measurements of the intensity of the stimulus have 

proved to be insufficiently refined. The intensity of chem-
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leal stimuli can hardly be varied by satisfactorily small 

measurable differences. Chemical stimuli do not reach the 

peak of their intensity instantaneously and cannot be of 

constant intensity for the duration of stimulation because of 

continuous chemical interaction between the irritant and the 

tissues. The authors mention that it is yet uncertain whether 

any chemicals are capable of stimulating selectively pain 

receptive organs. Chemical irritants do cause tissue changes 

and the intensity of stimulation cannot be reproduced on dif­

ferent occasions. 

Palmer (51) mentions that the application of a chemical 

to a peptic ulcer will evoke pain, but no attempt was made to 

measure the pain threshold. Revici and Ravich (58) in 19^9 

conducted studies of the pain from gastric ulcers as affected 

by the concentration of acid in the stomach. McAuliffe and 

associates (47) found that cotton tampons, soaked with adren­

aline solution and inserted along the turbinates for the pur­

pose of shrinking tissues in order to gain access to the 

sinuses, induced local and referred pain. 

Rosenthal (60) reported on the application of corrosive 

mixtures onto and into the skin to elicit pain. Research by 

Simons et al. (62) reveals that pain can be elicited by in­

tramuscular injection of hypertonic saline. There is no 

quantitative chemical method available at present for the 

study of pain threshold or pain intensity (28). 
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The Effect of Analgesic Agents upon Pain 

Hardy et al. (28) point out that pain of low intensity 

can be controlled by the analgesics of mildest action, such 

as the coal tar derivatives. Pain of moderate intensity, and 

short duration, can be eliminated by the opiates. Pain of 

high intensity necessitates for its control the elimination 

of the noxious stimulation or complete unconsciousness. 

The application of the radiant heat technique to the 

human integument has found wide application in evaluating 

analgesic drugs (40, 45, 55, 78, 79, 80). Work by Wolff 

et al. (78) reveals that the minimum effective quantity of 

morphine sulfate was 0.5 mgm. The saturation quantity, or 

the smallest amount with which the highest threshold raising 

effect was attained, was approximately 30 mgm. The saturation 

level for morphine sulfate was 100 per cent above the control 

threshold. The maximum threshold raising effect for quanti­

ties of morphine sulfate in 0.5 mgm. to 15 mgm. was reached 

at approximately the same time; that is, about 90 minutes after 

administration. Other opiates tested took approximately the 

same time. 

Investigators (1, 14, 15, 45) report on the effects of 

analgesic agents upon the reaction of an animal to noxious 

stimulation. Research with dogs by Andrews and Workman (1) 

reveals that 0.008 gm. of morphine raises the pain reaction 

threshold approximately 15 per cent above the controls. 
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Kuhn and Bromiley (40) using the dolorimeter on the 

human subject report that the effect of morphine upon the pain 

thresholds is variable. Their data indicate that in some 

individuals the pain thresholds may not be affected, whereas 

in others it rises above the level of tissue damage stimulus 

intensity. 

Oberst (49) reports that in addition to the rise in pain 

threshold, the administration of morphine results in relaxa­

tion, freedom from anxiety, lethargy, apathy, and difficulty 

in meditation in the human subject. He points out that an 

outstanding feature was the freedom from anxiety and feeling 

of contentment. The pain threshold raising action was not 

closely related in time to these psychological changes, the 

latter effects outlasting the threshold raising action by many 

hours. The administration of 30 mg. of morphine sulfate 

produced a state of nausea, loss of initiative, vomiting, 

sweating, weakness and unsteadiness of gait. 

Euthanasia by Decompression 

A survey of the literature reveals the absence of any 

work on determining whether pain is perceived during decom­

pression. Various workers have studied physiological changes 

in the dog during decompression. Kemph and his associates 

(36) recorded in 1952 the subcutaneous pressure when dogs were 

decompressed to 25 or 30 mm. of Hg. They found that the sub­



24 

cutaneous pressure rises to an average of 34 mm. of Eg. dif­

ferential pressure 60 seconds after decompression. 

Kemph and Hitchcock (38) also reporting in 1952 measured 

changes in the blood and circulation of dogs following explo­

sive decompression to low barometric pressures. These in­

vestigators obtained data on the oxygen content and percentage 

saturation of hemoglobin in the arterial blood of dogs 30 

seconds after explosive decompression. Their work indicates 

a gradual decrease at ambient pressures between 400 mm. of 

Eg. and 50 mm. of Eg., followed by a marked increase below 

50 mm. of Eg. The carbon dioxide content of arterial blood 

tends to decrease slightly at ambient pressures less than 200 

mm. of Eg. and markedly at ambient pressures less than 100 

mm. of Eg. It does not show the marked increase shown by the 

oxygen curve at ambient pressures less than 50 mm. of Eg. 

The authors reported that the circulation was blocked probably 

due to intravascular gas bubble formation and usually oc­

curred within 30 seconds after explosive decompression to 

barometric pressures less than 50 mm. of Eg. The exact loca­

tion of initial gas bubble formation was unknown, but the data 

presented indicated that gas bubbles first form centrally in 

the heart and pulmonary vessels or at the bifurcations of 

arteries. 

Whitehorn (75) in 1948 exposed veins and arteries, and 

made observations on animals that were exposed to barometric 
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pressures of 30 mm. of Hg. He reported that exposed veins re­

vealed massive intravascular bubbles which were absent in 

the arteries. Work by Armstrong (2) reveals that post 

mortem examinations of animals destroyed by explosive de­

compression showed that death was principally due to anoxia. 

There was considerable evidence of nitrogen and water vapor 

bubble formation throughout the tissue. Burch et al_. (7) 

found that explosive decompression of dogs followed by exposure 

to an ambient pressure of 30 mm. of Hg. results in vaporthorax 

which causes distention of the thoracic cage and partial col­

lapse of the lungs. Gas is also formed inside the heart in 

less than two minutes following explosive decompression. 

Kemph and his associates (37) also discussed the cause 

of death when dogs were decompressed to 30 mm. of Hg. He 

points out that rarely, if ever, will an animal die when de­

compressed if anoxia is prevented from occurring. 

In 1950 Burch and Hitchcock (6) reported that only two 

of twelve dogs survived when decompressed for two minutes. 

No vapor was found present in the heart of the two dogs that 

survived. They felt that death was due possibly to vaporiza­

tion blocking the coronary arteries. 

Edelmann and Hitchcock (16) mention that when dogs are 

exposed to an ambient pressure of 30 mm. of Hg., oxygen is 

unable to reach the blood, and animals could not have remained 

conscious for more than 10 seconds due to cerebral anoxia. 
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Surgical Measures for the Relief of Pain 

In 1889 Edinger (17) described a tract in man taking 

origin from cells in or about the posterior horn, crossing 

the midline and ascending in the anterior or anterolateral 

column of the spinal cord. This author was able to follow 

this column as high as the interolivary lamina, where it 

seemed to mingle with fibers of the medial lemniscus. Pre­

vious investigators had shown that fibers of the posterior 

root entered the posterior columns and ascended to the nuclei 

of the posterior columns in the medulla. Edinger noted that 

such a pathway could not explain the anesthesia which he found 

on the contralateral side of experimental animals after hemi-

section of the spinal cord. He did not, however, recognize that 

there was not anesthesia, but only analgesia. 

It was not until 1905 that Spiller (64) showed definite­

ly that the fibers carrying pain and temperature reside in 

the anterolateral columns. The author attended a patient 

suffering from generalized tuberculosis in whom there developed 

complete loss of appreciation of pain and temperature in the 

lower extremities with no diminution in the appreciation of 

tactile Impulses. At autopsy, tubercles were observed in both 

anterolateral columns of the spinal cord in the lower thoracic 

region. It was then concluded that the fibers conveying pain 

and temperature sensibilities traverse the anterolateral 

columns. 
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Several authors have studied the spinothalamic tract in 

lower animals: Quensel and Kohnstamm (57) in rabbits, Mott 

(48) and Clark (11) in the monkey, and Walker (69) in the 

monkey and chimpanzee. Walker (68) in 1940 also studied and 

described the spinothalamic tract in man from the apical and 

pericorneal cells of the posterior horn across the anterior 

commissure to the anterolateral columns and thalamus. 

The surgical operation for anterolateral chordotomy was 

proposed by Spiller (65) in 1912 and first performed by Mar­

tin for the relief of intractable pain of primary or meta­

static malignant disease. The level at which the chordotomy 

is performed will depend upon the segmental areas involved in 

the pain producing lesion. It is made at least two segments 

higher than the area to be made analgesic. 

In the discussion on relief of intractable pain by 

Elsberg (19) in 1941, it is mentioned that in general the loss 

of pain sensibility will be greater during the first few days 

after the operation than subsequently. If a unilateral sec­

tion of the anterolateral tract is done for pain on one side 

of the body, the tract of the opposite side must be divided. 

This author points out that after bilateral section of the 

anterolateral tracts, the loss of pain and temperature sen­

sibility involves all tissues below the segment through which 

the section was made including the viscera. Temporary reten­

sion of urine occurs regularly after bilateral chordotomy. 
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In males, the ability to have sexual intercourse and orgasm 

is lost. 

Peet et al. (53) in 1933 reported on a surgical tech­

nique of bilateral cervical chordotomy for relief of pain in 

chronic infectious arthritis in man. The author mentions that 

a bilateral chordotomy in the upper cervical segments should 

not be performed because of the danger of respiratory paral­

ysis. He points out that the phrenic nerves arise chiefly 

from cells in the fourth cervical segment. The exact location 

of the tracts descending to these cell bodies is unknown. He 

felt that, theoretically, edema following section of the an­

terolateral tracts might involve these descending fibers or 

the phrenic cells in the anterior horns as well as the tracts 

of the intercostal muscles, resulting in respiratory failure. 

These authors report on one clinical case where a bi­

lateral cervical chordotomy was done at the third and eighth 

cervical area. Pain and temperature sensibility were lost 

approximately from the neck caudad. 

In 1934 Putman (56) suggested a new operative method of 

treatment for pain in the upper limbs of man. By means of a 

spinal instrument which was inserted between the posterior 

columns, the commissure was divided from the upper cervical 

to the upper dorsal region. After the operation, there was 

a loss of pain and temperature sensibility over the chest and 

both upper limbs. 
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The first surgical section in man of the lemniscus 

lateralis at the brain stem for the treatment of diffuse re­

bellious pain was presented by Dogliotti (13) in 1938. The 

operation consisted of the interruption of the secondary af­

ferent path of pain (spinothalamic tract) at the highest 

level, that is, at the brain stem, immediately upon the pons. 

The author describes the surgical technique and of the four 

patients operated upon, one died in thirty-six hours and the 

other three all had uneventful postoperative recoveries. The 

preoperative pains disappeared immediately in the two patients 

with a complete secondary hemianalgesia, and were greatly 

reduced in the other patient. 

Schwartz (6l) reports a human case in which section of 

the spinothalamic tract in the medulla was performed for re­

lief of high intractible pain. The operative technique is 

described. On the basis of sensory changes which resulted, 

it was concluded that a topical arrangement of fibers is 

present in the spinothalamic tract, with fibers from the lower 

dermatomes occupying a dorsolateral position and those from 

the upper segments lying ventromedially. Further work by 

White (73) reported in 1941 reveals further observations on 

the spinothalamic tractotomy in the medulla oblongata. He 

feels that the land marks for sectioning the spinothalamic 

tract are just as clear cut in the medulla as the spinal cord, 
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and the risk of injury to the pyramidal tract is less than in 

the well standardized spinal procedure. 

In the discussion of the possibility of differential 

section of the spinothalamic tract of man, Hyndman and Epps 

(35) in 1939 questioned the accepted location of the spino­

thalamic tract as well as the accepted disposition of the 

fibers. They reported six cases in which the operation was 

done with the patient under local anesthesia only. Sections 

were made in the cord according to various patterns, and 

cutaneous sensibility was tested at the operating table. 

These authors found that the spinothalamic tract mediating 

the sensation of pain and temperature extends from a point 

about midway from the dentate ligament to the anterior roots 

to a point about midway from the anterior roots to the ante­

rior median fissure. Their studies indicate that fibers 

representing the lower segments are situated posteriorly in 

the tract and fibers representing successive segments upward 

dispose themselves more anterior. 

Bruce and Schafer (5) conducted experiments on monkeys 

in which the ventrolateral region of the spinal cord was 

destroyed. They not only found sensation entirely normal, 

but could not demonstrate any sign of ataxia, though paral­

ysis did occur. On the other hand. Lewandowsky (42) states, 

that section of Gower's Tract in dogs does produce a certain 

degree of analgesia. 
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Cadwalader (8) in 1912 reported on the cutting of the 

spinothalamic tract in two dogs. The depth of incision was 

not given, but, after death, the segment in which the incision 

had been made was mounted in celloidin and cut in serial sec­

tions in order to ascertain the exact limits of the area 

destroyed. Sections were also made from each segment of the 

cord and parts of the medulla and pons, so that the course 

of degeneration could be followed. 

Microscopic examination showed that the anterior and 

lateral portion of the white column of the cord had been de­

stroyed on both sides. A line drawn through the posterior 

limits of this area would just bisect the central canal. 

Anteriorly it extended to a point which corresponded to the 

position of the most medially situated anterior root fibers. 

The ventral and dorsal cerebellar tracts were degenerated as 

far as the pons. 

In both dogs motor paralysis was noted immediately fol­

lowing the operations, but it disappeared rapidly and was 

replaced by very marked ataxia. They concluded that the dogs 

did have a definite, though incomplete, loss of cutaneous 

sensation for pain and for extreme heat. 
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EXPERIMENTAL PROCEDURE 

A total of forty-four mongrel dogs of various ages, 

weights and sexes were used in these preliminary experiments. 

They were fed a diet which consisted of a dry commercial dog 

feed containing a minimum of twenty-five per cent protein and a 

canned dog food containing meat. Water was fed ad libitum . 

Intestinal parasites were controlled by oral administra­

tion of an anthelmintic^ and daily cleaning of the cages. 
p 

Fleas and lice were controlled with an insecticide . There 

was no evidence of excessive parasitism or nutritional defi­

ciency during the conduction of pain reaction threshold tests. 

The experimental animals were housed in metal cages 36 

inches deep, 36 inches high and 30 inches wide. They contain 

removable floors and trays to facilitate cleaning. 

Determination of the Pain Reaction Threshold 

by the Thermal Technique 

An experiment was designed to determine the pain reaction 

threshold in 15 dogs with the Hardy-Wolff-Goodell Dolorimeter. 

This apparatus allows for the quantitative measurement of the 

•^One capsule per 10 pounds of body weight. Each capsule 
contains 1 gram of 2,2'-dihydroxy-5> 51-dichlorodiphenyl methane 
and 1.2 grams of methyl benzene. The trade name of this 
product is "Vermiplex" and it is marketed by Allied Labora­
tories, Inc., Indianapolis, Ind. 

2 
One per cent cadmium sulfide and an adequate quantity of 

detergent. The trade name of this product is "Derisol" and 
it is marketed by Allied Laboratories, Inc., Indianapolis, 
Ind. 



33 

p 
pain reaction threshold by exposing 3*5 cm. of skin surface 

for a definite length of time to thermal radiation. An ex­

posure interval of three seconds was used in these experiments. 

The Hardy-Wolff-Goodell apparatus consists of a control 

box and projector (Figure 1). The control box is connected 

to a 60 cycle power line by means of a power cable. The low­

est limit of voltage on which the equipment will operate is 

105 volts while the upper limit is 125 volts. A binding post 

is provided for connecting the instrument to a suitable earth 

ground. The instrument is turned on by means of a power 

switch which controls all the power for the control box. 

The dolorimeter control box is provided with a variable 

transformer and a voltmeter to compensate for variations in 

power line voltage. The voltmeter scale is provided with a 

single line at mid-scale and the pointer of the meter is to 

be maintained as accurately as possible at this center line. 

The amount of heat in millicalories/cm. /sec. which is 

delivered to the area in the plane of the fibre bezel ring of 

the projector is controlled by means of the heat setting dial. 

In order not to overheat the projector or shorten the life of 

the lamp, the dial was not set at values above 200 milli-

calories except when measurements were being made. 

The time selector switch is provided with three posi­

tions, labeled "3 seconds", "Manual" and "Calibrate". With 

the time selector switch on the "3 seconds" position, the 



Figure 1. Hardy-Wolff-Goodell Dolorimeter 

1. Model ET2 Thermopile Serial ET2-33 

2. Model ES2 Projector 

3- Bezel ring with fibre washer 

4. Connector for cable to projector 

5. Heat setting dial 

6. Time selector switch 

7- Exposure button 

8. Meter setting knob 

9. 105-120 volt, 60 cycle a.c. power 

10. Ground terminal 

11. Power switch 

12. Meter 
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lamp will operate for a 3 second period whenever the button 

on the projector is held down. The lamp can also be actuated 

by means of the exposure button on the control panel. For 

heat exposures greater or less than three seconds, the time 

selector switch may be placed on the "Manual" position where­

upon the lamp will be controlled directly by the button on the 

projector or the exposure button on the control panel. The 

"Calibrate" position of the time selector switch turns the 

lamp on without operation of the exposure buttons. The pur­

pose of this position is to assist in calibration of the 

instrument. 

A binding post is provided for connecting the instrument 

to a suitable earth ground. This is a safety precaution which 

guards against accidental shock to the subject or operator 

in the event that a component failure causes any part of the 

case of the control box to become connected to the power line. 

The ground connection is not carried through to the projector, 

since all electrical connections in the projector are within 

the insulated "phenolic"handle. 

The dolorimeter was calibrated frequently with a Rubicon 

Potentiometer and a Model ET2 Thermopile to insure its ac­

curacy. The calibration technique outlined by Hardy et al. 

(30) was followed. A constant of 9*9 was used to calculate 

the intensity of radiation. 
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The surface of the skin to be tested was clipped with a 

No. 10 clipper blade and thoroughly blackened with India ink 

and sufficient time allowed for the ink to dry. This insured 

a high degree of absorption of the radiation, independent of 

the degree of natural pigmentation of the skin. This also 

eliminated all effects which could arise from any possible 

penetration of the rays below the skin surface. The stimulus 

could thus be considered purely thermal (30). 

The experimental animals were restrained by tying their 

legs together and to a one inch board platform with one quarter 

inch rope. It was essential to restrain the dogs in this 

manner several times previous to obtaining the pain reaction 

thresholds. The threshold tests were obtained only when the 

animal was in a quiescent state. 

Various areas of the body were tested for pain reaction 

thresholds. The smallest intensity of radiation on the 

shoulder which caused a lateral movement of the head, was de­

noted as a pain reaction threshold (Figures 2 and 3)• It was 

also found that there was a characteristic reflex twitch of 

the loin musculature whenever a definite level of stimulation 

was exceeded. The smallest intensity of radiation on the loin 

causing this musculature twitch was also recorded as a pain 

reaction threshold. 

The thermal stimuli were applied no oftener than every 

60 seconds. It was essential to keep the bezel ring of the 



Figure 2. Animal restrained with projector applied to the 

shoulder 

1. Model ER2 Control box 

2. Model ES2 Projector 

3. Integument blackened with India ink 

k. Head in relaxed position 

Figure 3* The lateral movement of the head denoting a pain 

reaction 

1. Exposure button pressed 

2. Lateral turning of the head to the area 

when the thermal stimulus was applied 
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projector assembly from touching the dog, but close enough not 

to allow the escape of thermal radiation. It was also neces­

sary not to let the experimental animal observe the operator 

press the exposure button on the control panel or a conditioned 

reflex was soon developed. 

Determination of the Pain Reaction Threshold by the 

Thermal Technique during Decompression 

Ten experimental animals were decompressed within the 

Euthanair. This apparatus consists of a metal tank and a 

motor of 5 H.P. to draw a vacuum. The tank is 33 inches in 

diameter and 40 inches long. The door is fitted with a rubber 

seal to insure a tight vacuum. The door also contains a small 

glass window to allow the operator to observe the animal dur­

ing decompression. The chamber has a small outlet to a 

Crosby manometer calibrated from 1 to 30 in inches of mercury. 

It is observed from Table 1 that the Euthanair is capable of 

decompressing an animal down to 429.6 mm. of Hg. in 11 seconds 

or ?4.0 mm. of Hg. in 70 seconds. The chamber has a decom­

pression capacity of 29.5 mm. of Eg. in 120 seconds. 

A metal plate was constructed and fitted into the wall 

of the tank to allow for the passage of electrical leads into 

the chamber. The control box of the dolorimeter was operated 

outside of the chamber while the projector was held by a clamp 
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Table 1. Time required for decompression of the experimental 
animal with the Euthanair 

Millimeters of 
mercury 

Time required for 
decompression 
(seconds) 

734.4 0 

582.0 5 

429.6 11 

277.2 21 

124.8 47 

74.0 70 

48.6 90 

29.5 120 

on a three-eighths inch rod mounted onto the platform in the 

chamber (Figure 4). 

The pain reaction thresholds were obtained at 734.4 (aver­

age barometric pressure at Iowa State College^), 582.0, 429.6, 

277*2 and 124.8 mm. of Hg. The lowest decompression level var­

ied slightly as it was obtained just prior to unconsciousness 

of the animal. Both types of pain reaction thresholds were 

recorded; that is, the smallest intensity of radiation on the 

shoulder and loin which caused a lateral deflection of the 

head and a twitch of the musculature of the second to fourth 

lumbar area, respectively. 

^Obtained from the Physics Department, Iowa State College. 



Figure 4. The experimental animal in the Euthanair with the 

projector applied to the skin of the shoulder 

1. Euthanair chamber 

2. Crosby mercury manometer 

3• Recompression pipe leading to outside 

4. Vacuum pipe leading to the motor 

5. Detachable plate containing the electrical 

leads 

6. Projector 

7. Control box 
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Determination of the Pain Reaction Threshold by 

Electrical Stimulation of the Canine Tooth 

An experiment using five dogs was designed to determine 

the pain reaction threshold by applying an electric current 

through a metal filling in a tooth. An instrument (Paino-

meter) was designed and constructed to deliver up to 45 volts 

(d.c.) to the metal fillings in the canine tooth (Figure 5)• 

A Dekapot Model DP-311 Potentiometer was constructed in the 

stimulator to regulate the voltage. This potentiometer has a 

linearity of + 0.005 per cent and an input resistance accuracy 

of + 0.05 per cent. A constant input resistance of 10,000 

ohms is made available and the instrument carries a power 

rating of 5 watts at 30°C rise. The maximum input volts of 

220 volts EMS are present in the design. The voltage output 

is calculated by multiplying the dial reading x 44. The 

electrical design is presented in Figure 6. 

Two silver alloy amalgam fillings were placed in each 

canine tooth in opposite positions so that pincer like 

electrodes would contact the two fillings. The cavities were 

drilled with an electric drill fitted with a 1/32" bit. 

The cavities were drilled as deep into the dentine as possible 

without entering the pulp chamber. 

The silver alloy was mixed thoroughly with mercury in a 

mortar with a pestle. The excess mercury was squeezed out 

through a cloth until the silver amalgam was in a semisolid 



Figure 5* Electrical tooth stimulator (Painometer) 

1. Exposure button 

2. Selector dial for battery number 

3• Potentiometer dial 

4. Spring type clamps 

5» Detachable plate from Euthanair 
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SWITCH 

45  VOLT 
BATTERY 

Dekapot Model DP-3 
Potentiometer 

PINCHER L IKE  ELECTRODES 

Figure 6. Electrical Design of the Electrical Tooth Stimulator 
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state. The cavities were then packed tightly and a small 

depression allowed for stabilization of the electrodes. 

During the threshold reaction tests the dogs were re­

strained in a manner similar to that used in the study of the 

conduction of the pain reaction thresholds by the thermal 

technique. In addition the head was restrained by tying the 

collar to the platform (Figure 7)• The upper lip was taped 

away from the canine tooth. Gauze packs were taped dorsal 

to the tooth to keep the area dry. A small block of wood was 

taped posterior to the canine tooth to keep the lower canines 

from removing the pincer like electrodes from the fillings. 

A mouth spectulum was used which gave good exposure to the 

teeth, but was found to interfere with observation of the 

contraction of the facial muscles. 

A pain reaction threshold was taken as the smallest 

electric current applied to the metal filling of the tooth 

necessary to produce a twitching of the facial muscles. The 

threshold tests were recorded only when the experimental dogs 

were quiet. It was essential to restrain the animals in this 

manner several times previous to obtaining the pain reaction 

thresholds. It was also necessary not to allow the animals 

to observe the operator press the stimulator button or a con­

ditioned reflex was soon manifested. 



Figure 7« Painometer assembled with dog restrained 

1. Electrical leads to Painometer 

2. Small piece of wood taped between molars 

3» Electrical stimulator control box 
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Decompression of Morphinized Animals 

Since morphine raises the pain reaction threshold, an 

experiment was designed to determine if there was any change 

in the anxiety and excitement during decompression while under 

the influence of morphine• It would appear that since mor­

phine alleviates pain of moderate intensity, a decrease in 

anxiety and apprehension would be observed during decompression 

after morphinization if the animal was receiving pain from 

decompression. Conversely, if the animal receives no pain 

during decompression, there is reason to believe that one 

would observe no change in anxiety during decompression after 

morphinization. 

Ten dogs were used in the experiment. Previous to the 

administration of morphine, each experimental animal was de­

compressed three times on different days to a state of un­

consciousness. The amount of excitement and apprehension was 

recorded. A scale from 1 to 5 was used to record the varying 

degrees of anxiety with a recording of 5 denoting extreme 

excitement. 

Morphine was injected subcutaneous1y at a dose of 1 

mg./kg. One hour after the injection of morphine the dogs 

were decompressed to a state of unconsciousness and the amount 

of apprehension was again recorded. Movies were taken of the 

morphinized animals during decompression for detailed study. 

Pain reaction thresholds were determined with the Hardy-Wolff-
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Goodell Dolorimeter on the dogs before administration of the 

morphine and one hour after its injection. Both types of pain 

reaction thresholds were recorded as in the previous experi­

ments. Where high intensities of radiation were required to 

produce a response, the location of the projector with regard 

to the integument must be changed with each observation or 

severe burning with skin necrosis will result. The thermal 

stimulus is applied no oftener than at 60 second intervals. 

Division of the Lateral Spinothalamic Tracts 

It was found that animals vary considerably in the amount 

of excitement, apprehension and anxiety that they exhibited 

during the decompression. A surgical experiment was designed 

with Ik dogs to determine if the animal exhibited the same 

degree of excitement and anxiety after the animal was relieved 

of the sensation of pain. If the excitement exhibited during 

decompression was due partially or completely to the pain 

experienced, then severing certain spinal tracts to alleviate 

the pain sensation in the body should decrease the amount of 

excitement and anxiety during decompression. On the con­

trary, if the animal does not experience any pain during de­

compression, then the sectioning of these spinal tracts should 

not affect the amount of excitement observed during decom­

pression. 
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Previous to the surgical treatment, each experimental 

animal was decompressed three times on different days to a 

state of unconsciousness and the amount of anxiety and appre­

hension was recorded. A scale was devised from 1 to 5 to 

record the varying degrees of anxiety with 1 designating the 

smallest amount of excitement and 5 the greatest amount of 

excitement. Approximately four weeks after the surgical 

division of the lateral spinothalamic tracts the dogs were 

again decompressed three times on different days and the 

amount of anxiety was recorded. 

Animals used in the surgical procedures were determined 

to be in normal clinical health by means of a thorough phys­

ical examination. Subjects revealing any evidence of systemic 

disease of any nature were not used as an experimental sub­

ject. Food and water were withheld for twelve hours prior to 

surgery. The animals were anesthetized by the use of pento­

barbital sodium which was given intravenously to produce the 

desired effect. 

All surgery was done under aseptic conditions. Instru­

ments, with the exception of Castroviego ophthalmic knife, 

were sterilized by steam in an autoclave by using 20 pounds 

pressure for 20 minutes. The Castroviego ophthalmic knife 

was sterilized by immersion in a 1/1000 aqueous solution of 

benzalkonium chloride for 30 minutes prior to use. 
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The hair over the anterior dorsal cervical region and 

external occipital protuberance was clipped with an electrical 

clipper fitted with a #10 clipper blade. The clipped area was 

then shaved and again scrubbed with soap and water. The area 

was rinsed with water to remove all traces of soap. The pre­

pared skin was painted with 1/1000 tincture of benzalkonium 

chloride. 

After the surgical field was prepared, the animal was 

placed on the operating table in a ventral recumbency. Sand 

bags were placed under the anterior part of the cervical area 

to allow for adduction of the head. A tracheal tube was in­

serted into the trachea since the weight of the head and neck 

was supported on the sand bags and exhibiting pressure on the 

larynx and anterior part of the trachea. The head remained 

in an adducted position to facilitate exposure of the area 

dorsal to the atlas. 

The operative field was draped with sterile towels and 

fixed with towel clamps so that only a small triangular op­

erative skin area was exposed (Figure 8). The skin incision 

was made on the median line from a point slightly anterior to 

the external occipital protuberance caudal approximately four 

inches depending on the size of the dog (Figure 9)» The depth 

of the incision was increased until the spine of the axis was 

exposed. The fascia and muscles were cut close to the spine 

of the axis, the cutting edge of the scalpel being directed 



Figure 8. Exposure of operative field 

1. Integument dorsal to external occiputal 

condyles 

2. Integument dorsal to the spine of the axis 

Figure 9. Skin incision exposing cervical muscles 
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against the sides of the spinous process. At this point an 

automatic retractor was inserted and the blades of the re­

tractor were opened. By means of a Bucks Mastoid curette the 

soft tissues with the periosteum covering the spine and lam­

inae of the axis, and the laminae of the atlas were cleanly 

scraped away from the bone until the laminae were well ex­

posed (Figure 10). There was often considerable hemorrhage 

during these manipulations, but it was checked by using hema-

stats on the arteries and packing gauze into the cavity. 

The spine of the axis was removed at its base with a Hart-

man rongeur (Figure 11). The anterior two thirds of the lami­

nae of the axis and the posterior one half of the laminae of the 

atlas were then removed with a Kerrison rongeur (Figure 12). 

By this means the dura was exposed. All soft tissues were 

periodically bathed with a physiological saline solution. 

The dura was grasped with a Castroviego fixation forceps 

and slightly elevated. A 4 mm. incision was made in the dura 

with a Castroviego ophthalmic knife adjacent to the forceps 

and a groove director was inserted into the small opening in 

the dura (Figure 13). With slight upward pressure on the 

groove director, the dura was split anterior and then poste­

rior. The arachnoid was incised to expose the pia mater and 

the spinal cord. 

The cut edge of the dura on one side was now grasped with 

two Halsted mosquito forceps and laterally retracted. The 



Figure 10. Exposure of the first and second cervical 

vertebrae 

1. Atlas 

2. Axis 

3* Bowne tissue retractors 

Figure 11 Removal of spine of axis 

1. Hartman rongeur 

2. Spine of axis 



59 

m# 



Figure 12. Removal of laminae of atlas 

1. Dura mater 

2. Kerrison rongeur 

3. Atlas 

Figure 13• Insertion of the groove director into a small 

opening in the dura mater 

1. Second cervical nerve 

2. Groove director 

3. Castroviego ophthalmic knife 

4. Dura mater 
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dorsal roots of the second cervical nerves were severed. The 

dentate ligament on one side was grasped with a dressing 

forceps and divided at its attachment to the dura (Figure 14). 

The cord was gently raised and rotated by grasping the cut 

dentate ligament adjacent to the cord to expose its ventro­

lateral surface. An incision was made in the cord between the 

dentate ligament and the second cervical nerve perpendicular 

to the anteroposterior axis of the cord (Figure 15)• The 

Castroviego ophthalmic knife penetrated the cord at the level 

of the dentate ligament and emerged just ventral to the level 

of the ventral spinal root. The depth of the incision was 

approximately 1.5 mm. varying some with the size of the dog. 

It is possible that other tracts, for example, the ventral 

spinocerebellar tract, the spinotectal tract and a portion of 

the ventral spinothalamic tract were severed. If the area 

selected was free from visible blood vessels, bleeding did 

not result from the incision into the cord. 

The above procedure was then repeated on the opposite 

side of the cord so that the division of the lateral spino­

thalamic tract was bilateral. The dura was closed with 

interrupted sutures of 4-0 silk (Figure 16). The first cer­

vical nerves were thai isolated and divided as they emerged 

from the intervertebral foramina of the atlas (Figure 17). 

At first an attempt was made to divide the lateral spino­

thalamic tracts anterior to the emerging of the first cervical 



Figure l4. Severing the dentate ligament 

1. Dressing forceps 

2. Halsted mosquito forceps 

3» Second cervical nerve 

4. Dentate ligament 

5* Pia mater 

Figure 15* Sectioning the right lateral spinothalmic tract 

1. Dressing forceps 

2. Second cervical nerve 

3- Castroviego ophthalmic knife penetrating 

the spinal cord 
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Figure 16. Suturing the dura edges into apposition 

1. Kalt needle holder 

2. One-half curved needle 

3. Interrupted suture in place 

4. Dura mater 

Figure 17* Severing the first cervical nerve as it 

emerges from intervertebral foramen 

1. Dura edges sutured in apposition 

2. Five inch tissue scissors 

3. First cervical nerve 
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nerves from the spinal cord, but an excessive amount of hemor­

rhage was encountered from the peridural longitudinal verte­

bral venous sinuses. Worthman (83) describing these sinuses 

in the dog in 1956 mentions that at their origin at the 

foramen magnum and throughout the atlas, they appeared ampul­

la ted and larger than any other point in their course. With­

in the atlas the large sinuses lay against the sides of the 

vertebral arches. Because of this lateral displacement, the 

first cervical nerve invariably penetrates the sinus of either 

side to emerge from the spinal canal. 

If great care was exercised in the laminectomy and in the 

division of the lateral spinothalamic tracts between the 

emerging of the second and third cervical nerves, the peri­

dural longitudinal vertebral venous sinuses were not penetrated. 

In the event of their penetration, electric cautery and pack­

ing with Gel foam"®" were effective in controlling the hemorrhage. 

The entire wound was washed with a physiological saline 

solution and all sequestrums were removed. The automatic 

retractors were removed and the muscles were united in layers 

by continuous 00 chromic catgut sutures. The edges of the 

superficial fascia were then united by interrupted 00 chromic 

catgut sutures, and those of the skin by interrupted nylon 

^Marketed by the Upjohn Company, Kalamazoo, Mich. 
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sutures. A two inch strip of adhesive tape was then applied 

over the incision. 

The postoperative care consisted of expressing the blad­

der twice daily for the first 48 to 72 hours and only occa­

sionally longer. Constipation was usually observed and the 

bowels were emptied by enemas for a similar length of time. 

The experimental animals were given a 5 per cent dextrose 

solution subcutaneously at the rate of 10 cc. per pound per 

day until the animals were able to take food and water. This 

varied from 24 to 96 hours. Since the animals were down 3 to 

7 days, it was essential to keep the cages dry and clean. 

The skin sutures were removed in 5 to 7 days. 



69 

RESULTS AND DISCUSSION 

Determination of the Pain Reaction Threshold with the 

Hardy-Wolff-Goodell Dolorimeter 

A total of 875 pain reaction thresholds were recorded 

with the Hardy-Wolff-Goodell Dolorimeter on 15 dogs. Four 

hundred and seventy of these observations were recorded with 

the projector adjacent to the cutaneous area of the right 

shoulder. The remaining observations were recorded with the 

thermal stimulus applied to the right lumbar region. 

All integumental areas of the experimental animals were 

tested in an attempt to obtain a pain reaction threshold which 

manifested the greatest amount of accuracy in its reproduci­

bility. It was essential to find a pain reaction in which 

the identification and reaction to pain were clear cut, and 

the same reaction observed each time the stimulus was ap­

plied. When the thermal stimulus was applied to the dog's 

forehead, the pain reaction was quite varied. A sudden with­

drawal, or muscular twitches of the head and neck, or the 

palpebral reflex was observed. When a thermal stimulus was 

applied to the proximal part of the tail, a wiggle of the tail 

was often observed. Frequently, the animal would only strug­

gle in an attempt to reflect its head laterally towards the 

tail. Other times a sudden lunge forward was observed. 
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The application of a thermal stimulus to the shoulder 

area resulted in a sudden lateral movement of the head. This 

pain reaction was found to be very constant and highly re­

producible. It is observed in Table 2 that the average range 

was 226.7 to 252.1 mc./cm. /sec. with an over-all mean of 
p p 

241.6 mc./cm. /sec. A mean range of 229.0 to 247*3 mc./cm. / 

sec. was observed between twelve dogs. In experimental animals 
o 

3 and 7 a range of only 15 mc./cm. /sec. was recorded. 

In dogs 6, 9 and 11 a definite, reproducible pain reac­

tion was not observed when a thermal stimulus was applied to 

the shoulder. Experimental animals 6 and 11 often exhibited 

a pain reaction by whining or yelping. This type of a pain 

reaction was most often observed in older dogs. 

When radiant heat was applied to the dorsal lumbar 

region of the dog, a characteristic muscle twitch was often 

2 
observed. An average range of 301.0 to 338.5 mc./cm. /sec. 

2 
was observed which is a 12.2 mc./cm. /sec. larger range than 

the threshold range observed when the projector was focused 
Q 

on the shoulder. An over-all mean of 316.3 mc./cm. /sec. was 

J) 
noted which is 7*+»7 mc./cm. /sec. higher than the over-all 

mean of the first type of pain reaction measured. It is dif­

ficult to reason why a pain reaction threshold over the lumbar 

region should be that much higher than when the dolorimeter 

is applied to the shoulder. Very little difference in skin 

thickness is observed in these two areas. 
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Table 2. The pain reaction thresholds with their means and 
ranges using the Hardy-Wolff-Goodell Dolorimeter 

Dolorimeter applied to Dolorimeter applied to 
the cutaneous area of the cutaneous area of right 
right shoulder dorsal lumbar area 

Dog 
no. 

No. of 
obser­
vations 

Mean3 Range3 No. of 
obser­
vations 

Mean3 Range3 

1 50 240.2 225-250 50 269.2 245-290 

2 50 233-9 205-245 50 304.4 285-340 

3 20 245.5 235-250 20 325.5 315-350 

4 15 229.0 220-245 15 328.3 320-350 

5 15 236.O 220-245 

6 20 313.5 300-330 

7 20 241.0 235-250 

8 50 238.9 220-255 50 298.8 275-315 

9 50 298.1 280-315 

10 50 240.3 230-255 

11 50 351.9 335-390 

12 50 246.4 235-255 

13 50 247.2 230-265 

14 50 242.6 230-250 50 333.0 315-3^0 

15 50 247.3 235-260 50 352.4 3^0-365 

Total 
obser­
vations 470 405 

Over-all 
mean 241.6 316.3 

Ave. range 226.7-252.1 301.0-338.5 

amc./cm.2/sec. 
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Experimental animals 5, 7 and 12 did not give a charac­

teristic muscular twitch when a thermal stimulus was applied 

to the lumbar region. Struggling and yelping were more 

frequently observed. Animals 10 and 13 did not give a muscu­

lar twitch with any consistency. Often a muscular twitch 

would result at about an average level, but a following 

thermal stimulus of 500 mc./cm. /sec. would fail to produce 

this pain reaction. 

When intensities of 300 mc./cm. /sec. or higher were used, 

it was essential to frequently change the site of the projector 

or a necrosis of the integument would result. 

As would be expected from observing the means in Table 

2, an analysis of variance presented in Tables 3 and 4 re­

vealed the differences in the pain reaction thresholds between 

Table 3* Analysis of variance of the pain reaction thresholds 
applying the Hardy-Wolff-Goodell Dolorimeter to the 
cutaneous area of the right shoulder 

Source of 
variation 

Degrees of 
freedom 

Sum of squares Mean square 

Over-all mean 1 27,434,163.20 27,434,163.20 

Among dogs 11 11,069.20 1,006.29** 

Replication 458 27,908.38 60.94 

Total 470 27,^73,140.78 
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Table 4. Analysis of variance of the pain reaction thresholds 
applying the Hardy-Wolff-Goodell Dolorimeter to the 
cutaneous area of the dorsal lumbar region 

Source of 
variation 

Degrees of 
freedom 

Sum of squares Mean square 

Over-all mean 1 40,518,504.45 40,518,504.45 

Among dogs 9 296,358.10 32,928.67** 

Replication 395 58,205-66 147.36 

Total 405 40,873,068.21 

**P > .01 

dogs to be highly significant (P >.01). This indicates that 

there is less than one chance in a hundred that these dif­

ferences could be due to coincidence. Since the Bartlett's 

Test for the homogeneity of the variance shows that the error 

variance within dogs is heterogenous, the above test may be 

invalid. 

To express the consistency of the determination of the 

pain reaction thresholds, approximate 95 per cent confidence 

intervals based on the pooled estimate of error were computed. 

The confidence intervals for the shoulder area and lumbar area 

were 241.58 + 2.89 and 316.28 + 17.81 respectively. The 

average standard error of the mean for the shoulder area was 

1.47 and 9.08 for the lumbar area. By comparing the means of 

the two areas to their respective standard error of the mean, 

the standard errors appear quite small. This reveals that 

there is a high degree of consistency in the determination of 



74 

pain reaction thresholds of the two areas. It also points out 

that the pain reaction thresholds of the shoulder area are 

more consistent than those of the lumbar area. Therefore, the 

shoulder area is recommended over the lumbar area as the pre­

ferred anatomical location for pain reaction threshold deter­

minations . 

Determination of the Pain Reaction Threshold with the 

Hardy-Wolff-Goodell Dolorimeter during Decompression 

Previous investigators (81) have pointed out that the 

intensity of two pains existing separately at the same time 

is not greater than that of the more intense of the two. Also 

the existence of one pain actually raises the threshold for 

perception of another. Therefore, if the pain reaction 

threshold is raised during decompression as measured with the 

Hardy-Wolff-Goodell Dolorimeter, the experimental animal is 

receiving pain from another source during decompression. 

Conversely, if the pain reaction threshold is not altered 

during decompression, there is reason to believe that the 

animal does not receive pain from the decompression. 

It was highly essential when the control pain reaction 

thresholds were recorded at 734.4 mm. of Hg. (average baro­

metric pressure at Iowa State College) to keep the environment 

identical to that when the animal was decompressed. No other 

factors were varied except pressure change when the thresholds 

were recorded at the various decompression levels. The animal 
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was restrained in a similar method, the Euthanair motor was 

operating but the door was opened approximately one inch and 

the chamber was illuminated. The animal was restrained and put 

in the chamber in this manner several times before the thresh­

olds were obtained. By turning on the motor and putting the 

animal in strange surroundings in the chamber, a large increase 

in the pain reaction threshold was initially observed. Even 

after the animal became accustomed to the motor and chamber, 

the pain reaction threshold was some higher with the motor 

operating. 

The animal was found to become unconscious at approximate­

ly a pressure of 124 mm. of Hg. The final threshold was ob­

tained just prior to unconsciousness. Thresholds were re­

corded until the animal exhibited any degree of fatigue or 

discomfort. Then they were discontinued until another day. 

Inspection of Table 5 shows that pain reaction thresholds 

were recorded over the shoulder area of seven dogs and over 

the lumbar region of three animals. The lateral movement of 

the head appeared to be a more constant pain reaction thresh­

old and could be reproduced with more accuracy than the 

musculature twitch of the lumbar region. It is also observed 

from this table that the differences between the means at the 

various decompression levels were small. 

Experimental animal 31 showed the greatest difference in 

pain reaction thresholds during the decompression. The mean 



Table 5» The number of pain reaction thresholds and their means recorded at 
various decompression levels 

Decom­
pression 734.4 mm. of 582.0 mm. of 429.6 mm. of 277*2 mm. of 124.8 mm. of 
levels Ms Hg_. H&. H&. H&. 

Dog Sa No. Mean^ No. Mean No. Mean*" No. Meanb No. Meaiv Over-all 
no. or of of of of of b 

L obser- obser- obser- obser- obser-
vatlons vations vat ions vat ions vations 

31 L 30 376.0 30 387.8 30 387.5 20 388.3 12 397.1 385.8 

32 S 20 316.3 10 337.0 10 328.5 10 332.5 8 330.6 326.7 

33 L 20 306.3 15 310.0 15 307.3 14 308.2 11 312.3 308.5 

34 S 25 311.6 15 312.7 13 310.8 10 319.0 9 323.3 314.2 

35 S 25 248.2 10 248.0 10 255.0 10 251.5 9 259.4 251.8 

36 L 20 375.3 12 374.2 12 376.3 10 373-5 8 383.8 376.0 

37 S 20 274.3 10 283.O 10 283.5 10 278.0 7 277.9 278.7 

38 S 20 345.5 14 349.1 10 350.0 10 351.0 9 359.4 350.2 

39 s 20 267.3 10 264.5 10 260.0 10 261.0 9 271.7 265.3 

40 s 20 347.0 15 341.7 15 342.7 10 354.5 8 354.3 349.8 

aS = dolorimeter applied to the cutaneous area on the right shoulder; L = 
dolorimeter applied to the cutaneous area on the right dorsal lumbar area. 

*fyc./cm.2/sec. 
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p 
of 30 observations before decompression was 376.0 mc./cm. / 

p 
sec. while a mean of 397*1 mc./cm. /sec. was recorded at a 

pressure of 124.8 mm. of Eg. The data reveal that dog 37 re-
p 

corded only a 3*6 mc./cm. /sec. rise from 73*+.4 mm. of Hg. 

down to 124.8 mm. of Hg. However, this experimental animal 
p 

actually exhibited a drop of 0.1 mc./cm. /sec. when decom­

pressed from 277.2 to 124.8 mm. of Hg. 

It is observed from Table 6 that a total of 700 pain re­

action thresholds were recorded on 10 dogs. Two hundred and 

fifty nine of these reaction thresholds were registered with 

the projector over the loin area on 3 dogs and the remaining 

44l were observed when the thermal stimulus was applied to the 

integument of the shoulder on 7 dogs. The over-all means re-
p 

veal an increase of 9*4 mc./cm. /sec. from 734.4 to 124.8 mm. 

of Eg. when the projector is applied to the shoulder. A 11.9 
p 

mc./cm. /sec. increase is observed during the decompression 

when the radiant heat is applied to the lumbar region. 

It is noted from Table 6 that one of the largest in­

creases in pain reaction thresholds occurs between 734.4 and 

582 mm. of Hg. As previously mentioned the only difference 

between the recording of these two observations is that the 

chamber door is closed quietly from a distance of 1 inch and 

the chamber is decompressed to 582.0 mm. of Hg. It was noticed 

that usually the animal observed the closing of the chamber 

door and there is some change in motor noise when the chamber 



Table 6. The total number of pain reaction thresholds and their over-all means 
recorded at various decompression levels on ten dogs 

Cutaneous area 734.4 mm. of 582.0 mm. of 429.6 mm. of 277.2 mm. of 124.8 mm. of 
where dolori­ Hg. H*. Hg. Hg. 
meter was ap­ Total Over­ Total Over­ Total Over­ Total Over­ Total Over­
plied no. all no. all no. all no. all no. all plied 

of 8 of __ a of a of a of a 
obser­ mean obser­ mean obser­ mean obser­ mean 

obser­ mean 

va­ va­ va­ va­ va­
tions tions tions tions tions 

Shoulder 150 301.5 84 305.1 78 304.4 70 306.8 59 310.9 

Loin 70 352.5 57 357.3 57 357.0 44 356.7 31 364.4 

Total observa­
tions per de­
compression 

141 135 114 level 220 141 135 114 90 

Total observa­
tions in the 
chamber 700 

amc./cm.^/sec. 
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is closed to start decompression. These two factors may play 

a part in the slight increase in pain reaction thresholds at 

this early stage of decompression. 

The greatest increase in pain reaction thresholds is ob­

served in the final decompression stage from 277*2 to 124.8 

mm. of Hg. Two known factors may play a role in this increase. 

One is that at the final stage of decompression the animal 

begins to show rapid and deep respirations. The other factor 

is that as the atmospheric pressure decreases, an animal has 

a correspondingly decreased oxygen tension and as a result 

may exhibit poor response to external stimuli. 

It may be of interest, preliminary to a careful normal an­

alysis of the data, to perform a quick nonparametric sign test 

on the dolorimeter reading differences for adjacent threshold 

levels in Table 5* This test reveals 25 increases and 15 de­

creases. For example, for animal 31, 376.0 to 387*8 represents 

an increase, whereas 387*8 to 387*5 represents a decrease, etc. 

A 95 per cent confidence interval for the "true" proportion of 

increases, based on binomial theory, covers the fraction 1/2 

(note that the ratio 25:15 persists (13$7) if only the first 

and last differences are calculated). In other words, granted 

that the sign test is not powerful, the non-numerical aspects 

of the data examined by this test show no material evidence 

against the hypothesis that successive pain reaction threshold 

increments tend to be neither positive or negative. 



Table 7» Analysis of variance of pain reaction thresholds at various decompres­
sion levels 

Within decompression levels Between decompression levels 
Dog 
no. 

Sum of 
squares 

Degrees 
of 
freedom 

Mean 
square 

Sum of 
squares 

Degrees 
of 
freedom 

Mean 
square 

0 
value 

31 47,500.88 117 405.99 4,577.18 4 1,144.30 2.82* 

32 134,442.32 53 2,536.65 3,662.58 4 915.65 O.36 

33 9,583.70 70 136.91 312.25 4 78.06 0.57 

34 7,692.32 67 114.81 1,351.47 4 337.87 2.94* 

35 5.757.51 59 97.58 1,090.65 4 272.66 2.79* 

36 9,167.46 57 16O.83 598.98 4 149.75 0.93 

37 7,429.60 52 142.87 817.48 4 204.37 1.43 

38 9,371.94 58 161.59 1,227.30 4 306.83 1.90 

39 8,585.62 54 158.99 926.60 4 231.65 1.46 

40 12,451.83 63 197.65 2,280.00 4 570.00 3.29* 

*P> .05. 
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Ten analyses of variance, presented in Table 7, of the 

pain reaction thresholds at various decompression levels show 

the differences in the observations at these decompression 

levels to be non-significant when tested at a significance 

level of 0.01 on a per dog basis, although four of the animals 

showed significance at the 0.05 level. It is noted that the 

significance probability shows considerable variation, ranging 

up to a value of 0.85. This wide range of levels of signifi­

cance is due in part to the large fluctuations in inherent 

variability exhibited in Tables 7, 13 and 14, and discussed 

on page 97. 

The individual F analyses of Table 7 show the greater 

part of the useful statistical abstracting that seems warranted 

by the data. Nevertheless, it may be of interest to attempt 

an over-all evaluation of ten dogs used. This is done by 

Fisher's combination of independent tests of significance which 

allows one to test the over-all effect of decompression on the 

pain reaction thresholds. The calculation and results of this 

test are presented in Table 8. It is noted from this table 

that a value of 21.55 is obtained for the total -log@ P which 

gives an over-all significance level of O.37. Individual 

shoulder and lumbar areas show values of >.0.50 and 0.27. 

These relatively large levels of significance indicate that 

no material evidence has been adduced by the experiment and 

analysis against HQ: for the ten dogs (strictly speaking, "dog 



Table 8. The combination of independent tests of significance of pain reaction 
thresholds at various decompression levels 

Dog 
no. V V 

vl° Vo Wo 
V2 

Wo 

Pd 1/P -LogeP 

31 2.82 117 4 11.30 128.3 0.913 0.03 33.3 3.51 

32 O.36 53 4 1.44 54.4 0.976 0.85 1.2 0.18 

33 0.57 70 4 2.26 72.3 0.969 0.67 1.5 0.41 

34 2.94 67 4 11.80 78.8 0.851 0.03 33.3 3.51 

35 2.79 59 4 11.20 70.2 0.840 0.03 33.3 3.51 

36 0.93 57 4 3.72 60.7 0.940 0.42 2.4 0.88 

37 1.43 52 4 5.71 57.7 0.901 0.22 4.6 1.53 

38 1.90 58 4 7.60 65.6 0.884 0.11 9.1 2.21 

39 1.46 54 4 5.84 59.8 0.903 0.20 5.0 1.61 

40 3.29 63 4 13.20 76.2 0.827 0.02 67.O 4.20 

Total 21.55® 

FQ = computed F from table. 

= degrees of freedom for replicates. 

= degrees of freedom for between decompression levels 

A V? 
P = probability derived from V^, Vg y + y F , (52). 
«V2 2 10 

(20) = P (-37) 
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body sites") used in the decompression experiment, pain reac­

tion threshold (hence, by previously stated assumptions, pain) 

is not related to decompression level. Failure to adduce such 

evidence could be due to: 1) it is true that pain is not re­

lated to decompression. 2) the experiment was not precise 

enough to detect an existing pain-decompression relationship, 

perhaps due to the fluctuating inherent variability mentioned 

on page 80b. 3) the statistical test used (individual F's 

combined by Fishers criterion) may have lacked the statistical 

power to detect an existing pain decompression level relation­

ship. As a matter of fact, Appendix B describes a statistical 

technique which, if applied in this case, would have led to 

levels of significance higher than the 3 significance levels 

mentioned above. Reasons for featuring the present likely 

less powerful technique are given in the same appendix. 

In connection with (3) above, the reader may wonder, ir­

respectively of the analysis he happens to favor, why the HQ 

considered here is the "no pain" hypothesis. This choice of 

Hq entails the assumption that the burden of proof is on "pain',1 

i.e., in order to believe "pain", pain effects large enough 

must be observed and statistical analysis powerful enough must 

be used, to sway the experimenter away from the "no pain" HQ. 

Clearly, the reader inclined to think that "pain" rather than 

"no pain" is to be expected would adopt "pain" as his HQ, re­

quiring the experiment to be precise enough and the analysis 
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to be powerful enough to sway him to believing "no pain". 

Adopting the "pain" HQ requires defining dolorimeter readings 

corresponding to actual "substantial pain". If this were 

done, the data of this experiment could be used to test this 

new H0, requiring now the burden of proof to be on "no pain", 

or the data could be used to decide between "pain" and "no 

pain" on a symmetric basis, with acknowledged probabilities 

of error of the first and second kind. Since neither H has o 

been conclusively proven, it is presumptions to state that 

animals during decompression do or do not suffer pain. Further 

studies are necessary before definite conclusions can be drawn. 

Pain Reaction Thresholds Determined by Electrical 

Stimulation of the Teeth 

The pain reaction thresholds in the dog were ascertained 

by applying an electric current through a metal filling in the 

canine tooth and recording the lowest voltage at which the 

subject first experienced a painful sensation. Often the 

first painful sensation observed was a blinking of the eye­

lids, but this appeared to be inconsistent. It was observed 

that at a higher voltage a distinctly perceptible twitch of 

facial muscles appeared and this twitch was used as the pain 

reaction threshold. This muscle twitch appears to be quite 

constant compared to the other reactions observed and only 

occasionally would the animal struggle violently on electrical 



Table 9* The pain reaction thresholds obtained by electrical stimulation of the 
teeth 

Dog Left canine tooth Right canine tooth 
no. No. of 

observa­
tions 

Mean 
(Volts) 

Range 
(Volts) 

No. of 
observa­
tions 

Mean 
(Volts) 

Range 
(Volts) 

301 20 31.49 24.75 - 44.00 20 33.13 26.84 - 40.04 

302 20 36.34 24.04 - 43.26 20 39.64 29.92 - 44.00 

303 20 38.79 33.44 - 42.24 20 38.59 31.24 - 44.00 

304 20 30.58 23.85 - 36.95 20 39.29 34.76 - 44.00 

305 20 35.12 20.24 - 44.00 20 33.66 27.28 - 40.48 

Total 
no. of 
obser­
va­
tions 100 100 

Over­
all 
mean 34.46 36.86 

Ave. 
range 

25.26 - 42.09 30.01 - 42.50 
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stimulation of the tooth. As in previous experiments, it was 

highly essential to adapt the animal to the platform restraint 

methods, electrical stimulator and environment before record­

ing the observations. 

It is noted in Table 9 that 200 observations were re­

corded on 10 canine teeth of 5 dogs. This table reveals a 

wide mean range of 30.58 to 38.79 volts on the left canine 

tooth and a mean range of 33*13 to 39*64 volts on the right 

canine tooth. An average range of 25.26 to 42.09 volts was 

observed on the left canine tooth and 30.01 to 42.50 volts on 

the opposite canine tooth. Dog 305 revealed a 23.76 volt 

range on the left tooth and dog 302 exhibited a 14.08 volt 

range on the right tooth. It should be pointed out that the 

maximum voltage elicited by the painometer was 44.00 volts 

which is observed in Table 9 as the maximum range on at least 

one tooth of the experimental animals. Occasionally 44.00 

volts failed to elicit a pain reaction in the animals. 

Several factors may play a part in the wide variations 

observed in the pain reaction thresholds recorded by electrical 

stimulation of the canine tooth. Although care was exercised 

in placing the depth of the metal filling as nearly equal as 

possible in the canine teeth, a variation of 10,000 to 75,000 

ohms resistance was still obtained across the teeth. This 

would obviously vary greatly the amount of current essential 

for stimulation. Even though the muscular twitch of the fa-
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clal muscles appeared to be the most constant pain reaction 

upon electrical stimulation of the canine tooth, it did not 

offer as clear cut an identification of pain and with the 

consistency when compared to the reaction observed from 

thermal stimulation of the integument. The silver amalgam 

fillings were hand packed and some variation in the density 

of the filling is inevitable. The pincer like electrodes no 

doubt varied some in their contact on various inlays. 

As would be expected from observing the mean thresholds, 

an analysis of variance, presented in Table 10, indicated the 

Table 10. Analysis of variance of the pain reaction thresh­
olds obtained by electrical stimulation of the 
teeth 

Source of 
variation 

Degrees 
of 
freedom 

Sum of 
squares 

Mean 
square 

Over-all mean 1 

Among teeth 9 

Among dogs 4 

Between (R and L) 
teeth 1 

Dogs x (R and L) teeth 4 

Replication 190 

254,327.12 254,327.12 

2,036.33 226.26** 

1,120.10 280.03** 

Total 200 

288.00 

628.23 

4,065-10 

260,428.55 

288.00 

157.06 

21.40* 

** 

4.58. 

P > .01. 

*The estimate of the true standard deviation 21.40 = 
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difference in the means among the dogs and between the teeth 

to be highly significant (P > .01). Also attention is called 

to the large interaction (157*06) which makes the interpreta­

tion of the F values among dogs and among teeth less mean­

ingful. A very high estimate of the true standard deviation 

(4.58) indicates a lack of reproducibility; hence, error is 

excessive in measuring the pain reaction threshold of the 

canine tooth by electrical stimulation. Because of this error 

observed in the control observations, no attempt was made to 

record the pain reaction thresholds during decompression by 

electrical stimulation of the tooth. 

Anxiety and Excitement Observed during Decompression Pre- and 

Post-morphinization of the Experimental Animals 

Dogs vary a great deal in the amount of apprehension they 

exhibit during decompression. Some animals lie quietly or 

"sniff" inquisitively at the chamber walls while other dogs 

yelp and make violent attempts to escape from the chamber. 

As Hardy et al. (28) pointed out, pain of moderate intensity 

can be eliminated by the opiates. This is well substantiated 

by observing Table 11. One mg./kg* of morphine raised the 

over-all mean pain reaction threshold 129 mc./cm. /sec. when 

the projector was applied to the shoulder of 9 dogs. The over-
p 

all mean pain reaction threshold was raised 106.2 mc./cm. /sec. 

when the thermal stimulus was applied to the lumbar area of 4 



Table 11. The pain reaction threshold means before and after morphine administra­
tion using the Hardy-Wolff-Goodell Dolorimeter. Anxiety and apprehen­
sion observed during decompression are recorded before and after the 
Injection of morphine 

Dog Sa No. of Dolorlmetrlc means Anxiety and apprehension dur­
no. or 

L 
obser­
vations 
with 
dolori­
meter 

Before 
morphinization 

After 
morphinization 

1 mg./kg.d 

ing decompression0 or 
L 

obser­
vations 
with 
dolori­
meter 

Before 
morphinization 

After 
morphinization 

1 mg./kg.d 
Before 
morphinization 

After 
morphinization 

1 me./kg.® 

101f S 
L 

20 
20 

240.2 
269.2 

289.5 
309.8 

2 3 

102 S 
L 

o
o
 v
w
x
 

3 1 

103 S 
L vn

xj
x 

O
O
 m 341.0 

371.2 3 2 

104 S 50 265.6 385.3 1 1 

aS = dolorimeter applied to cutaneous area of right shoulder; L = dolorimeter 
applied to cutaneous area on the right dorsal lumbar area. 

^Mc./cm^/sec. 

cAnxiety and apprehension expressed from numbers 1 to 5 with number 1 desig­
nating the smallest amount of excitement and number 5 the greatest excitement. 

dT 

e 

Pain reaction thresholds recorded 1 hour after morphine administration. 

Decompressed 1 hour after administration of morphine. 

Appeared to be refractive to morphine as no salivation, vomition or de­
pression was observed. 



Table 11. (Continued) 

Dog Sa No. of Dolorlmetrlc means Anxiety and apprehension dur­
no. or obser­ Before After ing decompression0 

L vations 
with 
dolori­
meter 

morphinization morphinization 

1 mg./kg.d 
Before 
morphinization 

After 
morphinization 

1 mg./kg.e 

105 S 50 240.3 406.1 2 1 

106 L 50 351-9 463.1 4 1 

107 S 50 246.4 359.0 2 1 

108 S 50 247.2 421.4 1 1 

109f S 50 242.6 313.1 2 2 

110 S 50 247.3 422.0 3 2 

Over­
all 
mean 

S 
L 

245.0 
312.6 m

-
o
o
o
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dogs. This gives an increase of 3^.5 per cent and 25«4 per 

cent when the projector was applied to the shoulder and lumbar 

area, respectively. 

Further inspection of Table 11 reveals that in six out 

of the ten animals the amount of anxiety decreased during 

decompression after the injection of 1 mg./kg. of morphine. 

In only dog 101 did there appear to be some increase in ap­

prehension. It should be pointed out that in addition to the 

rise in pain reaction threshold, the administration of mor­

phine resulted in relaxation, and freedom of anxiety, lethargy 

and apathy before the animal was decompressed. This is well 

in agreement with reports by Oberst (49)• Since the morphine 

decreased the anxiety and apprehension before decompression, 

it would appear that little or no emphasis can be assigned to 

the observation that the experimental animals exhibited less 

excitement during decompression post-morphinization. 

It is interesting to note from Table 11 that in the 

control observations during decompression, 20 per cent of the 

dogs exhibited no apprehension and excitement, 40 per cent 

manifested some anxiety, 30 per cent appeared excited and only 

10 per cent showed marked anxiety. This appears to well 

represent the amount of excitement exhibited by all of the 

animals decompressed here in these experiments at Iowa State 

College; that is, about one-half of the animals reveals some 

excitement and 1 out of every 10 exhibits marked anxiety. 
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It is also of interest to note from Table 11 that dogs 

101 and 109 appeared to be refractive to morphine as no 

salivation, vomition or depression was observed. Neverthe­

less, an increase in pain reaction thresholds was observed but 

much less than the over-all mean increase. 

Observations of the Anxiety and Apprehension during De­

compression Before and After Severing the 

Lateral Spinothalamic Tracts 

Elsberg (19) pointed out in his work on humans that a 

bilateral section of the lateral spinothalamic tracts results 

in a loss of pain sensibility in all structures below the 

segment through which the section was made including the vis­

cera. A bilateral section of these tracts was made at the 

level of the second cervical vertebrae on 14 experimental 

dogs. The dorsal roots of the second cervical nerves were 

transected as well as the first cervical nerves as they emerge 

from the intervertebral foramina. 

It may be noted from Table 12 that very little change in 

excitement and anxiety was observed in the nine dogs de­

compressed after the bilateral sectioning of the lateral 

spinothalamic tracts. Four dogs exhibited no apparent change 

while dogs 202 and 207 appeared to increase some in excite­

ment. Animals 205, 210 and 211 exhibited some decrease in 

anxiety. In view of this little or no change in excitement 



Table 12. The amount of anxiety exhibited during depression and the pain reaction 
thresholds recorded with the Hardy-Wolff-Goodell Dolorimeter observed 
before and after severing of the lateral spinothalamic tracts of the 
dog 

Dog Amount of anxiety 
no. exhibited during 

decompression* 
Before After 
severing severing 
lateral lateral 
spino- spino­
thalamic thalamic 
tracts tracts 

Dolorlmetrlc means -
projector applied to 
lumbar region 

2 
(mc./cm. /sec.) 
Before 
severing 
lateral 
spino­
thalamic 
tracts 
(10 obser­
vations) 

After 
severing 
lateral 
spino­
thalamic 
tracts 
(10 obser­
vations) 

Sensitivity 
to needle 
puncture 
caudal to 
shoulder 
area 

Remarks 

201 

202 

203 

204 

205 

206 

1 

4 

2 

2 

1 

2 

1 

306.3 

325.6 

296.4 

346.1 

340.6 

305.6 

392.6 

420.1 

500+ 

Absent 

Absent 

Absent 

Respiratory paraly­
sis observed when 2nd 
lat. spinothalamic 
tract was severed 

Died in 5 days with 
central nervous 
disturbances 

Respiratory paraly­
sis observed when 
2nd lat. spinothala­
mic tract was severed 

^Expressed from numbers 1 to 5 with number 1 designating the smallest amount 
of excitement and number 5 the greatest amount of excitement during decompression. 



Table 12. (Continued) 

Dog Amount of anxiety Dolorlmetrlc mean - Sensitivity Remarks 
no. exhibited during projector applied to to needle 

decompression* lumbar region 
o . 

puncture 

Before After Cmc#/cm• /sec.) \^auuax w 

severing severing Before After snouxaer 

lateral lateral severing severing area 

spino­ spino­ lateral lateral 
thalamic thalamic spino­ spino­
tracts tracts thalamic thalamic 

tracts tracts 
(10 obser (10 obser­
vations) vations) 

207 2 3 310.6 440.1 Some on right 
thigh and ab­
dominal wall 

208 3 3 346.3 401.6 Very slight 

209 2 — 321.3 — Complete flaccid 
paralysis of limbs 

210 3 2 336.3 425.0 Absent 

211 4 3 300.6 435.2 Absent 

212 3 3 297.4 500+ Some on right 
rear leg 

213 4 — 312.6 - Died two days after 
surgery 

214 2 2 287.9 464.5 Very slight 
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after alleviating the animal of the pain sensation, there is 

reason to believe that the anxiety and excitement observed 

during decompression are not the result of painful stimuli. 

No doubt the motor and vacuum noise, and a strange enclosed 

environment play a major role in the excitement and apprehen­

sion exhibited during decompression. 

Further inspection of Table 12 shows that the sensitivity 

to a needle puncture caudal to the shoulder was completely 

alleviated in dogs 202, 204, 205, 210 and 211. It was greatly 

decreased in the other four dogs tested. A pain reaction 

could be observed in the facial area as the result of cutane­

ous innervation by some of the cranial nerves. Also a pain 

reaction could be manifested by the needle puncture over the 

anterior part of the shoulder area as the result of the cuta­

neous innervation by the spinal accessory nerve. 

The fact that a pain response could be observed by 

thermal stimulation and not by a mechanical stimulation is 

difficult to explain. It is observed in Table 12 that the 

pain reaction threshold was greatly increased after the bi­

lateral sectioning of the spinothalamic tracts. In experi­

mental animals 205 and 212 no pain reaction was exhibited when 

500 mc./cm. /sec. were applied for 3 seconds. Severe integu-

mental necrosis did result. 
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The data also reveal that two animals died when the 

second lateral spinothalamic tract was severed. It is highly 

possible that the incisions were deep enough to transect the 

respiratory tract resulting in respiratory paralysis. Peet 

et al. (53) points out that in man an upper bilateral cervical 

chordotomy should not be performed because of the danger of 

respiratory paralysis. They mention that the exact location 

of these tracts descending to these cell bodies is unknown. 

They point out that edema following the sectioning of the 

lateral spinothalamic tracts might involve these descending 

fibers as well as the tracts of the intercostal muscles, re­

sulting in respiratory failure. It is highly possible that 

this may have been responsible for the death of animal 213 

which died two days after surgery. Also a large quantity of 

edema surrounding the cord may have caused the central nervous 

disturbances observed in animals 203 and 209. 

In the animals that survived the operation, urinary and 

fecal retention was a common sequela for 48 to 72 hours fol­

lowing surgery. The experimental animal was usually unable 

to rise until about the third to the seventh day. Some inco­

ordination and ataxia were observed for 2 to 4 weeks after 

the operation. The ataxia was most prominent in the rear 

quarters. In approximately 4 weeks, the return of a normal 

gait and actions was observed. 
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p 
The increases of 9.4 and 11.9 mc./cm. /sec. observed in 

Table 6 and discussed on page 77 are small if compared to the 
p 

increases of about 50 mc./cm. /sec. which are frequently neces­

sary to show a perceptible increase in a pain reaction. In 
O 

other words, it requires an increase of about 50 mc./cm. /sec. 

above the pain reaction threshold to evoke a pain reaction 

revealing severe pain. A great deal of variation was ob­

served among animals. 
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SUMMARY AND CONCLUSIONS 

A series of preliminary experiments were performed to 

determine if pain is experienced during decompression in the 

dog. A total of 875 pain reaction thresholds were recorded 

with the Hardy-Wolff-Goodell Dolorimeter on 15 dogs. 

The application of radiant heat to the shoulder of the 

dog was found to give a sudden lateral movement of the head 

towards the projector. The definite, reproducible pain reac­

tion was quite constant and an over-all threshold mean of 

2 
241.58 mc./cm. /sec. was recorded for 470 observations. An 

o 
average range of 226.7 to 252.1 mc./cm. /sec. was observed. 

The confidence interval for the shoulder area was 241.58 + 

2.89 and the standard error of the mean was 1.47. Thus, a 

high degree of consistency in the determination of the pain 

reaction thresholds of this area was observed. 

When a thermal stimulus was applied to the dorsal lumbar 

region of the dog, a characteristic muscle twitch was ob­

served. This pain reaction exhibits an over-all threshold 

mean of 316.28 mc./cm. /sec., a confidence interval of 

316.28 + 17.81 and a standard error of 9«08. These data re­

veal that the pain reaction thresholds of the shoulder area 

are more consistent than those of the lumbar area. 

Seven hundred pain reaction thresholds were recorded at 

various decompression levels on ten dogs. A small increase of 

9.4 mc./cm. /sec. was recorded in the over-all means from 
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73^.4 mm. of Eg. (average barometric pressure at Iowa State 

College) to 124.8 mm. of Eg. when the thermal stimulus was 

applied to the shoulder of 7 dogs. An increase of 11.9 mc./ 
p 

cm. /sec. was recorded in the over-all means at similar de­

compression levels when the projector was applied to the 

lumbar area of 3 dogs. A statistical analysis of the data 

using a combination of independent tests of significance re­

vealed the differences in the pain reaction thresholds at 

various decompression levels to be insignificant (P à. 0.50 for 

the lumbar area, and P = 0.27 for the shoulder area), which 

means that according to this experiment, and analysis adopted, 

no convincing evidence against HQ (page 80b) has been un­

covered. 

This insignificance must be judged in the context of the 

qualifying remarks on pages 80b and 82, and also in the light 

of the following two considerations, all of which emphasize 

the exploratory nature of this work: 

1. No attempt was made to randomly select dogs from a 

well defined population to which one might want to 

apply any inferences made on the basis of this work. 

As a matter of fact, selection, if carried out at 

all, was on the basis rather of experimental con­

venience (nervous stability and youth). 

2. Under the standardized conditions outside of the 

chamber, some of the 15 dogs tested exhibited day to 
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day (inherent) variability comparable to the treat­

ment variability exhibited by the ten dogs in the 

actual decompression experiment (Tables 7> 13 and 14). 

Unusually great inherent variability was also ex­

hibited by dog 32 in the decompression experiment 

(Table 7)* The nature of this occasionally large in­

herent variability is not completely understood. In 

addition, attention is drawn to the significant inter-

dog variability exhibited in Tables 3 and 4. Since 

neither of the two H0 described on page 82 has been 

conclusively proven, it is presumptuous to state that 

animals during decompression do or do not suffer pain. 

Further studies are necessary before definite conclu­

sions can be drawn. 

Pain reaction thresholds were determined by electrical 

stimulation of metal fillings in the canine tooth. An elec­

trical stimulator was designed with a capacity of 44 volts 

(d.c.). A total of 200 observations was recorded on 10 teeth 

of five dogs. A wide average range of 25*26 to 42.09 volts 

was observed in the pain reaction thresholds on the left 

canine tooth and an average range of 30.01 to 42.50 volts was 

recorded on the opposite canine tooth. A very high standard 

deviation (4.58) indicated the lack of reproducibility of the 

pain reaction thresholds by electrical stimulation of the 

canine tooth. Because of this large error of obtaining pain 
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reaction thresholds by this method, no attempt was made to 

record the pain reaction thresholds during decompression. 

The injection of 1 mg.Ag. of morphine increased the pain 

reaction thresholds 34.5 per cent and 25.4 per cent when the 

dolorimeter was applied to the shoulder and lumbar region, re­

spectively. The majority of the animals exhibited a decrease 

in anxiety during decompression after the injection of morphine. 

It was evident that in addition to the rise in pain reaction 

threshold, the administration of morphine resulted in a relaxa­

tion, and a freedom from anxiety and lethargy before the animal 

was decompressed. Since the opiate decreased the excitement 

and apprehension before decompression, it appears that little 

or no emphasis can be attributed to the observation that the 

experimental animals exhibited less excitement during decompres­

sion post-morphinlzation. The data point out that approximately 

one-half of the animais decompressed reveals a small amount of 

excitement and only 1 out of 10 exhibits marked anxiety. 

The bilateral sectioning of the lateral spinothalamic 

tracts of the dog, which may have involved the severing of 

other tracts of that area, markedly decreased pain sensitivity 

and completely alleviated pain reaction due to mechanical stim­

ulation caudal to the shoulder in 5 animals. There appeared to 

be little or no change in anxiety and excitement during de­

compression following the bilateral sectioning of the lateral 

spinothalamic tracts. This indicates that the anxiety and 
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apprehension observed during decompression are not manifesta­

tions of painful stimuli. 
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APPENDIX A 

Table 13. Bartlett's test for inter-dog homogeneity of 
variances of the pain reaction thresholds apply­
ing the Hardy-Wolff-Goodell dolorimeter to the 
cutaneous area of the right shoulder 

Dog 
no. 

Sum of 
squares 

Degrees 
of 
freedom 
(N-1) 

1 
N-1 

Mean 
square 

(S2) 

Log S2 (N-1) Log S2 

1 1748 49 0.0204 35*67 1.55230 76.063 

2 2840 49 0.0204 57*96 1.76313 86.393 

3 545 19 0.0526 28.68 1*45758 27.694 

4 2985 14 0.0714 213*21 2.32879 32.603 

5 1260 14 0.0714 90.00 1.95424 27.359 

7 480 19 0.0526 25*26 1.40243 26.646 

8 5865 49 0.0204 119.69 2.07773 101.809 

10 2471 49 0.0204 50.43 1.70269 83.432 

12 3152 49 0.0204 64.33 1.80841 88.612 

13 4112 49 0.0204 83.92 1.92387 94.270 

14 1412 49 0.0204 28.82 1.45969 71.525 

15 1611 49 0.0204 32.88 1*51693 74.330 

Total 
28,481 458 0.4112 790.736* 

a o 
JT unadjusted = 70.90, versus a 5 per cent value of 19*68 

and a 1 per cent value of 24.72. 
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Table 14. Bartlett's test for inter-dog homogeneity of 
variances of the pain reaction thresholds apply­
ing the Hardy-Wolff-Goodell dolorimeter to the 
cutaneous area of the dorsal lumbar region 

Dog 
no. 

Sum of 
squares 

Degrees 
of 
freedom 

1 
N-1 

Mean 
square 

(S2) 

Log S2 (N-1) Log S2 

1 7968 49 0.0204 162.61 2.20112 107.855 

2 12382 49 0.0204 252.69 2.40243 117.719 

3 2655 19 0.0526 139*74 2.14520 40.759 

4 923 14 0.0714 65-93 1.81908 25.467 

6 1355 19 0.0526 71.32 1.85321 35.211 

8 4688 49 0.0204 95.67 1.98078 97.058 

9 3595 49 0.0204 73-37 1.86552 91.410 

11 16615 49 0.0204 339.08 2.53020 123.980 

14 3341 49 0.0204 68.18 1.83366 89.849 

15 2461 49 0.0204 50.22 1.70088 83.343 

Total 
55983 395 0.3194 812.651* 

XT unadjusted = 75»53 versus a 5 per cent value of 16.92 
and a 1 per cent value of 21.67* 



Table 15. Bartlett's test for lntra-dog homogeneity of variances of pain reaction 
thresholds, for four dogs selected randomly from the ten in the de­
compression experiment 

Dog Decompression 
level 
mm. of Hg. 

Sum of 
squares 

Degrees of 
freedom 
(N-1) 

1 
N-1 

Mean 
square 

(S2) 

Log S2 (N-1) Log S2 

31* 734.4 13,381 29 0.0345 461.4 2.66408 77.258 31* 
582.0 12,618 29 0.0345 435.1 2.63849 76.516 
429.6 10,482 29 0.0345 361.4 2.55799 74.182 
277.2 8,927 19 0.0526 470.0 2.67210 50.770 
124.8 2,093 11 0.0909 190.3 2.27921 25.071 

Total 47,501 117 0.2470 303.797 

33* 734.4 1,669 19 0.0526 87.9 1.94389 36.934 
582.0 1,450 14 0.0714 103.7 2.01494 28.209 
429.6 1,127 14 0.0714 80.5 1.90596 26.683 
277.2 2,244 13 0.0769 171.1 2.23325 29.032 
124.8 3,112 10 0.1000 311.2 2.49304 24.930 

Total 9,582 70 0.3723 145.788 

35* 734.4 973 24 0.0417 40.5 1.60810 38.594 35* 
582.0 692 9 0.1111 76.9 1.88589 16.973 
429.6 1,525 9 0.1111 169.4 2.22891 20.060 
277.2 1,594 9 0.1111 177.2 2.24846 20.236 
124.8 972 8 0.1250 121.5 2.08458 16.676 

Total 5,756 59 0.5000 112.539 

xf unadjusted: dog 31 (lumbar area) = 3.23 versus a 5 per cent value of 
9.49, dog 33 (lumbar area) = 8.66 versus a 5 per cent value of 9.49, dog 35 (shoul­
der area) = 11.72 versus a 5 per cent value of 9.49 and a 1 per cent value of 
13.28, and dog 37 (shoulder area) = 1.57 versus a 5 per cent value of 9.49. 



Table 15» (Continued) 

Dog Decompression Sum of Degrees of 1 Mean Log S2 (N-1) Log S2 

level squares freedom N-1 square 
mm. of Hg. (N-1) (S2) 

37a 734.4 2,313 19 0.0526 121.9 2.08529 39.621 
582.0 860 9 o.llll 95.5 1.98028 17.823 
429.6 1,452 9 o.llll 161.4 2.20790 19.871 
277.2 1,610 9 0.1111 178.9 2.25261 20.273 
124.8 1,193 6 0.1667 198.8 2.29842 13.791 

Total 7,428 52 0.5526 111.379 
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APPENDIX B 

Table 16. A two-way analysis of variance of the pain re­
action thresholds obtained from the decompression 
experiment when the dolorimetric projector was 
applied to the right shoulder area, with the two 
coordinates respectively, decompression level 
and dogs 

Source of variation Degrees 
of 
freedom 

Sum of 
squares 

Mean 
square 

Among dogs 6 48,403.1 8,067*2 

Among decompression levels 4 341.4 85.4 

Dogs x decompression levels 24 518.0 21.6 

Determination/dogs 406 16,164.6 39.8 

Table 17* A two-way analysis of variance of the pain reac­
tion thresholds obtained from the decompression 
experiment when the dolorimetric projector was 
applied to the lumbar region, with the two co­
ordinates respectively, decompression level and 
dogs 

Source of variation Degrees 
of 
freedom 

Sum of 
squares 

Mean 
square 

Among dogs 2 18,128.6 9,064.3 

Among decompression levels 4 219.6 54.9 

Dogs x decompression levels 8 97.0 12.1 

Determination/dogs 244 4,503.9 18.5 
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APPENDIX C: EXPLANATION OF APPENDIX 

The alternative method of analysis mentioned on page 82 

is to perform a two-way analysis of variance, with dogs the 

second category. General methods for handling two-way analy­

sis of variance in the presence of variance heterogeneity are 

not as yet known, and standard method of analysis applied in 

the presence of variance heterogeneity may be biased. For 

the data of the decompression experiment, there is very sig­

nificant dog to dog heterogeneity, as shown in Tables 13 and 

14 (this contrasted to the evidence for within-dog variance 

homogeneity, Table 15)• Possible bias introduced into the 

standard analysis by this variance heterogeneity are suggested 

by the fact that the dogs x decompression mean square is less 

than the determination/dog mean square for both shoulder and 

lumbar areas, and significantly so (0.025) for the shoulder 

area. 

The reader may feel that the likely greater power of the 

two-way analysis outweighs the danger of bias due to variance 

inhomogeneity. For such a reader the two-way analysis based 

on Tables 16 and 17 is summarized below. 

For dogs considered fixed, the appropriate error term is 

the determination/dog mean square, leading to levels of sig­

nificance of .08 and .02, respectively for shoulder and lumbar 

areas. 
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For dogs considered random, the correct error term tech­

nically is the dogs/decompression mean square, although its 

use in this case is open to question due to its magnitude 

compared to the determination/dog mean squares as discussed 

above. Nevertheless, if the tests are carried through with 

the dog/decompression denominator, one obtains significance 

of 0.015 and 0.035 for shoulder and lumbar areas, respectively. 

Therefore, it is possible that the dogs may have experienced 

some pain from decompression. 
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